Skip to main content

Top-Quark and Neutrino Condensation

  • Chapter
  • First Online:
Electroweak Symmetry Breaking

Part of the book series: Springer Theses ((Springer Theses))

  • 481 Accesses

Abstract

The key idea of our work is to achieve the electroweak symmetry breaking by generating masses of the known fermions, quarks and leptons. Prior to any attempts to build a fundamental theory of fermion masses, it is necessary to check whether the fermion masses can actually saturate the electroweak scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rest of standard fermions and their corresponding symmetries are of course present in the model in order to provide proper anomaly cancelation, but we do not treat them explicitly here as they do not participate in the symmetry breaking in our simplified analysis. Due to the factorization assumption the three generations of leptons exhibit a single common symmetry group.

  2. 2.

    The nomenclature of Type I and Type II of two-Higgs-doublet models was introduced in [27]. The two types differ by the Higgs couplings to fermions.

  3. 3.

    The limit in parenthesis follows from \(B\rightarrow X_s\gamma \) but it is very sensitive to assumptions and to input parameters.

  4. 4.

    In the ATLAS and CMS analyses the overall fermion scaling factor \(C_F\) is used, instead of \(C_t\), which scales only the top-quark Yukawa interaction in our model. In any case \(C_t=C_F\).

References

  1. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1 (2012), arXiv:1207.7214

  2. C.M.S. Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B B716, 30 (2012), arXiv:1207.7235

  3. G. Cvetic, Top quark condensation. Rev. Mod. Phys. 71, 513–574 (1999), hep-ph/9702381

  4. S.P. Martin, Dynamical electroweak symmetry breaking with top quark and neutrino condensates. Phys. Rev. D44, 2892–2898 (1991)

    ADS  Google Scholar 

  5. G. Cvetic, C. Kim, Flavor gauge theory, and masses of top and neutrino. Mod. Phys. Lett. A9, 289–298 (1994)

    Article  ADS  Google Scholar 

  6. S. Antusch, J. Kersten, M. Lindner, M. Ratz, Dynamical electroweak symmetry breaking by a neutrino condensate. Nucl. Phys. B658, 203–216 (2003), hep-ph/0211385

  7. V.A. Miransky, M. Tanabashi, K. Yamawaki, Dynamical electroweak symmetry breaking with large anomalous dimension and t quark condensate. Phys. Lett. B221, 177 (1989)

    Article  ADS  Google Scholar 

  8. W.A. Bardeen, C.T. Hill, M. Lindner, Minimal dynamical symmetry breaking of the standard model. Phys. Rev. D41, 1647 (1990)

    ADS  Google Scholar 

  9. A. Smetana, Top quark and neutrino composite higgs bosons, Eur. Phys. J. C 73(8) 1–12 (2013), arXiv:1301.1554

  10. L. Canetti, M. Drewes, M. Shaposhnikov, Sterile neutrinos as the origin of dark and baryonic matter. Phys. Rev. Lett. 110, 061801 (2013), arXiv:1204.3902

  11. J.R. Ellis, O. Lebedev, The Seesaw with many right-handed neutrinos. Phys. Lett. B653, 411–418 (2007), arXiv:0707.3419

  12. J. Heeck, Seesaw parametrization for n right-handed neutrinos. Phys. Rev. D86, 093023 (2012), arXiv:1207.5521

  13. M.-T. Eisele, Leptogenesis with many neutrinos. Phys. Rev. D77, 043510 (2008), arXiv:0706.0200

  14. B. Feldstein, W. Klemm, Large mixing angles From many right-handed neutrinos. Phys. Rev. D85, 053007 (2012), arXiv:1111.6690

  15. T. Appelquist, J. Carazzone, Infrared singularities and massive fields. Phys. Rev. D11, 2856 (1975)

    ADS  Google Scholar 

  16. H. Pagels, S. Stokar, The pion decay constant, electromagnetic form-factor and quark electromagnetic selfenergy in QCD. Phys. Rev. D20, 2947 (1979)

    ADS  Google Scholar 

  17. P. Beneš, Dynamical symmetry breaking in models with strong Yukawa interactions. Acta Phys. Slov. 62, 1–274 (2012), arXiv:1208.1889

  18. P. Beneš, Contribution of right-handed neutrinos and standard fermions to W and Z masses (2014), arXiv:1402.5055 [hep-ph]

  19. R.L. Stratonovich, On a method of calculating quantum distribution functions. Sov. Phys. Doklady 2, 416 (1957)

    ADS  MATH  Google Scholar 

  20. J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77–78 (1959)

    Article  ADS  Google Scholar 

  21. M.A. Luty, Dynamical electroweak symmetry breaking with two composite Higgs doublets. Phys. Rev. D41, 2893 (1990)

    ADS  Google Scholar 

  22. C.T. Hill, C.N. Leung, S. Rao, Renormalization group fixed points and the Higgs boson spectrum. Nucl. Phys. B262, 517 (1985)

    Article  ADS  Google Scholar 

  23. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459, 1–241 (2008), hep-ph/0503173

  24. CMS Collaboration, S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 1207, 143 (2012), arXiv:1205.5736

  25. ATLAS Collaboration, G. Aad et al., Search for charged Higgs bosons decaying via \(H^{+} \rightarrow \tau \nu \) in top quark pair events using \(pp\) collision data at \(\sqrt{s}=7\) TeV with the ATLAS detector. JHEP 1206, 039 (2012), arXiv:1204.2760

  26. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, et al., Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 516, 1–102 (2012), arXiv:1106.0034

  27. L.J. Hall, M.B. Wise, Flavor changing Higgs—boson couplings. Nucl. Phys. B187, 397 (1981)

    Article  ADS  Google Scholar 

  28. J.F. Donoghue, L.F. Li, Properties of charged Higgs bosons. Phys. Rev. D19, 945 (1979)

    ADS  Google Scholar 

  29. H. Haber, G.L. Kane, T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables. Nucl. Phys. B161, 493 (1979)

    Article  ADS  Google Scholar 

  30. ATLAS Collaboration, G. Aad et al., Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127, ATLAS-COM-CONF-2012-161 (2012)

    Google Scholar 

  31. CMS Collaboration, S. Chatrchyan et al., Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Smetana .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smetana, A. (2014). Top-Quark and Neutrino Condensation. In: Electroweak Symmetry Breaking. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07073-5_3

Download citation

Publish with us

Policies and ethics