Skip to main content

An Intelligent Tool for the Automated Evaluation of Pedestrian Simulation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8445))

Abstract

One of the most cumbersome tasks in the implementation of an accurate pedestrian model is the calibration and fine tuning based on real life experimental data. Traditionally, this procedure employs the manual extraction of information about the position and locomotion of pedestrians in multiple videos. The paper in hand proposes an automated tool for the evaluation of pedestrian models. It employees state of the art techniques for the automated 3D reconstruction, pedestrian detection and data analysis. The proposed method constitutes a complete system which, given a video stream, automatically determines both the workspace and the initial state of the simulation. Moreover, the system is able to track the evolution of the movement of pedestrians. The evaluation of the quality of the pedestrian model is performed via automatic extraction of critical information from both real and simulated data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  2. Moussad, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010)

    Google Scholar 

  3. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295(3-4), 507–525 (2001)

    Article  MATH  Google Scholar 

  4. Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67, 056122 (2003)

    Google Scholar 

  5. Henein, C.M., White, T.: Agent-based modelling of forces in crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 173–184. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007)

    Article  Google Scholar 

  7. Willis, A., Gjersoe, N., Havard, C., Kerridge, J., Kukla, R.: Human movement behaviour in urban spaces: Implications for the design and modelling of effective pedestrian environments. Environment and Planning B: Planning and Design 31(6), 805–828 (2004)

    Article  Google Scholar 

  8. Schultz, M., Schulz, C., Fricke, H.: Passenger dynamics at airport terminal environment. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 381–396. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Bandini, S., Gorrini, A., Vizzari, G.: Towards an integrated approach to crowd analysis and crowd synthesis: A case study and first results. arXiv preprint arXiv:1303.5029 (2013)

    Google Scholar 

  10. Kostavelis, I., Boukas, E., Nalpantidis, L., Gasteratos, A.: A mechatronic platform for robotic educational activities. Interdisciplinary Mechatronics, 543–568

    Google Scholar 

  11. Kostavelis, I., Boukas, E., Nalpantidis, L., Gasteratos, A., Rodrigalvarez, M.A.: Spartan system: Towards a low-cost and high-performance vision architecture for space exploratory rovers. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1994–2001. IEEE (2011)

    Google Scholar 

  12. Konolige, K.: Small vision systems: Hardware and implementation. In: International Symposium on Robotics Research, pp. 111–116 (1997)

    Google Scholar 

  13. Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: From software to hardware. International Journal of Optomechatronics 2(4), 435–462 (2008)

    Article  Google Scholar 

  14. Kostavelis, I., Nalpantidis, L., Gasteratos, A.: Supervised traversability learning for robot navigation. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 289–298. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. De Cubber, G., Doroftei, D., Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Stereo-based terrain traversability analysis for robot navigation. In: IARP/EURON Workshop on Robotics for Risky Interventions and Environmental Surveillance, Brussels, Belgium (2009)

    Google Scholar 

  16. Vannoorenberghe, P., Motamed, C., Blosseville, J.M., Postaire, J.G.: Monitoring pedestrians in a uncontrolled urban environment by matching low-level features. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2259–2264. IEEE (1996)

    Google Scholar 

  17. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision 63(2), 153–161 (2005)

    Article  Google Scholar 

  18. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 743–761 (2012)

    Article  Google Scholar 

  19. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)

    Article  Google Scholar 

  20. Vizzari, G., Manenti, L., Crociani, L.: Adaptive pedestrian behaviour for the preservation of group cohesion. Complex Adaptive Systems Modeling 1(7) (2013)

    Google Scholar 

  21. Weidmann, U.: Transporttechnik der fussgänger - transporttechnische eigenschaftendes fussgängerverkehrs (literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich (1993)

    Google Scholar 

  22. Kretz, T., Bönisch, C., Vortisch, P.: Comparison of various methods for the calculation of the distance potential field. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 335–346. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Klüpfel, H.: A Cellular Automaton Model for Crowd Movement and Egress Simulation. PhD thesis, University Duisburg-Essen (2003)

    Google Scholar 

  24. Hall, E.T.: The Hidden Dimension. Anchor Books (1966)

    Google Scholar 

  25. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: Modeling and experiments. Physica A: Statistical Mechanics and its Applications 391(1), 248–263 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boukas, E., Crociani, L., Manzoni, S., Vizzari, G., Gasteratos, A., Sirakoulis, G.C. (2014). An Intelligent Tool for the Automated Evaluation of Pedestrian Simulation. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07064-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07063-6

  • Online ISBN: 978-3-319-07064-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics