Skip to main content

Combining Discrete Ellipsoid-Based Search and Branch-and-Cut for Binary Quadratic Programming Problems

  • Conference paper
Book cover Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014)

Abstract

We propose a hybrid algorithm that combines discrete ellipsoid-based search (DEBS) and a branch-and-cut (B&C) MIP solver to solve binary quadratic programming (BQP) problems, an important class of optimization problems with a number of practical applications. We perform experiments on benchmark instances for the BQP problem and compare the performance of two B&C based solvers, the DEBS method that is commonly used in the communications community, and the new hybrid algorithm. Our experimental results demonstrate that the new hybrid algorithm outperforms both the well-known MIP solvers and the DEBS approach. Further comparison against two state-of-the-art special-purpose algorithms in the literature demonstrates that the hybrid approach is competitive: achieving the same or better performance on six of seven benchmark sets against one algorithm and performing competitively against the semi-definite programming (SDP) based algorithm for moderate size problems and some dense problems, while under-performing on larger problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the uncapacitated task allocation problem. Operations research letters 33(2), 176–182 (2005)

    Article  MathSciNet  Google Scholar 

  2. Finke, G., Burkard, R., Rendl, F.: Quadratic assignment problems. Surveys in combinatorial optimization 61 (2011)

    Google Scholar 

  3. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving max-cut problems to optimality. Mathematical Programming, 1–26 (2012)

    Google Scholar 

  4. Watters, L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Operations Research 15(6), 1171–1174 (1967)

    Article  Google Scholar 

  5. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems. IEEE Transactions on Wireless Communications 7(1), 277–287 (2008)

    Article  Google Scholar 

  6. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares problems. SIAM Journal on Matrix Analysis and Applications 31(3), 1071–1089 (2009)

    Article  MathSciNet  Google Scholar 

  7. Borchers, B., Mitchell, J.E.: A computational comparison of branch and bound and outer approximation algorithms for 0–1 mixed integer nonlinear programs. Computers & Operations Research 24(8), 699–701 (1997)

    Article  MathSciNet  Google Scholar 

  8. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In: Mixed-Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 427–445. Springer (2012)

    Google Scholar 

  9. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Mathematical Programming 121(2), 307–335 (2010)

    Article  MathSciNet  Google Scholar 

  10. Wiegele, A.: Biq mac library–a collection of max-cut and quadratic 0–1 programming instances of medium size. Preprint (2007)

    Google Scholar 

  11. Li, D., Sun, X., Liu, C.: An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach. Journal of Global Optimization 52(4), 797–829 (2012)

    Article  MathSciNet  Google Scholar 

  12. Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of Operations Research and Management Science. Wiley, Chichester (2010)

    Google Scholar 

  13. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem. Mathematical Programming 109(1), 55–68 (2007)

    Article  MathSciNet  Google Scholar 

  14. Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy, vol. 2. Springer (1998)

    Google Scholar 

  15. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)

    Google Scholar 

  16. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for integer least squares problems. Technical Report MIE-OR-TR2013-07, University of Toronto, Toronto (2013)

    Google Scholar 

  17. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical programming 66(1), 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  18. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Management Science 31(12), 1533–1546 (1985)

    Article  MathSciNet  Google Scholar 

  19. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical programming 36(3), 307–339 (1986)

    Article  MathSciNet  Google Scholar 

  20. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex minlp problems. Computers & Chemical Engineering 19, 131–136 (1995)

    Article  Google Scholar 

  21. Geoffrion, A.M.: Generalized benders decomposition. Journal of Optimization Theory and Applications 10(4), 237–260 (1972)

    Article  MathSciNet  Google Scholar 

  22. Abhishek, K., Leyffer, S., Linderoth, J.: Filmint: An outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS Journal on computing 22(4), 555–567 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ku, W.Y., Anjos, M.F., Chang, X.W.: Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems. Technical report, Group for Research in Decision Analysis, Montreal (2013)

    Google Scholar 

  24. Krislock, N., Malick, J., Roupin, F.: BiqCrunch online solver (2012), http://lipn.univ-paris13.fr/BiqCrunch/solver (retrieved: December 22, 2013)

  25. Carter, M.W.: The indefinite zero-one quadratic problem. Discrete Applied Mathematics 7(1), 23–44 (1984)

    Article  MathSciNet  Google Scholar 

  26. Williams, A.: Quadratic 0-1 Programming Using the Roof Dual: With Computational Results. RUTCOR, Hill Center, Rutgers University (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ku, WY., Beck, J.C. (2014). Combining Discrete Ellipsoid-Based Search and Branch-and-Cut for Binary Quadratic Programming Problems. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07046-9_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07045-2

  • Online ISBN: 978-3-319-07046-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics