Skip to main content

Friction Stir Processing

  • Chapter
  • First Online:
Friction Stir Welding and Processing

Abstract

The intrinsic nature of friction stir process has two basic components as highlighted in previous chapters, material flow and microstructural evolution. The development of friction stir processing as a generic metallurgical tool for microstructural modification and a broader manufacturing technology is connected to these. Even though the adaption of these friction stir process based technological variants is slow, the potential of these is limitless. The focus of this chapter is to illustrate the linkages of basic friction stir process attributes to some illustrative examples of new technology development. The chapter is by no means comprehensive because many ideas can be built on these basics and each one can have its own niche area of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.F. Ashby, Designing hybrid materials. Acta Mater. 51, 5801 (2003)

    Article  Google Scholar 

  • W.A. Backofen, I.R. Turner, D.H. Avery, Superplasticity in an Al-Zn alloy. Trans. ASM 57, 980–989 (1964)

    Google Scholar 

  • N. Balasubramanian, R.S. Mishra, K. Krishnamurthy, Friction stir channeling: characterization of the channels. J. Mater. Process. Technol. 209(8), 3696–3704 (2009)

    Article  Google Scholar 

  • P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, M.W. Mahoney, Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr. Mater. 44, 61 (2001)

    Article  Google Scholar 

  • I. Charit, R.S. Mishra, Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy. Acta Mater. 53(15), 4211–4223 (2005)

    Article  Google Scholar 

  • J. Datsko, C.T. Yang, Correlation of bendability of materials with their tensile properties. Trans. ASME B 82(4), 309–313 (1960)

    Google Scholar 

  • M. Dixit, J.W. Newkirk, R.S. Mishra, Properties of friction stir-processed Al 1100-NiTi composite. Scr. Mater. 56, 541–544 (2007)

    Article  Google Scholar 

  • M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of a quality index. AFS Int. Cast Metal J. 5, 43–50 (1980)

    Google Scholar 

  • J.D. Eshelby, Proc. Roy. Soc. Lond. A241, 376 (1957)

    Article  Google Scholar 

  • G.J. Grant, D. Herling, W. Arbegast, C. Allen, C. Degen, 2006 International Conference on Superplasticity in Advanced Materials, Chengdu, China, 23 June 2006

    Google Scholar 

  • Z. Hashin, S. Strikman, J. Appl. Phys. 33, 3125 (1962)

    Article  Google Scholar 

  • S.M. Howard, B.K. Jasthi, W.J. Arbegast, G.J. Grant, D.R. Herling, Friction surface reaction processing in aluminum substrates. Friction stir welding and processing III as held at the 2005 TMS annual meeting, San Francisco, CA, 2005, pp. 139–146

    Google Scholar 

  • L.B. Johannes, L.L. Yowell, E. Sosa, S. Arepalli, R.S. Mishra, Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology 17, 3081–3084 (2006)

    Article  Google Scholar 

  • R. Kapoor, V.S.H. Rao, R.S. Mishra, J.A. Baumann, G. Grant, Probabilistic fatigue life prediction model for alloys with defects: applied to A206. Acta Mater. 59(9), 3447–3462 (2011)

    Article  Google Scholar 

  • R. Kapoor, K. Kandasamy, R.S. Mishra, J.A. Baumann, G. Grant, Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy. Mater. Sci. Eng. A 561, 159–166 (2013)

    Article  Google Scholar 

  • N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Critical grain size for change in deformation behavior in ultrafine grained Al-Mg-Sc alloy. Scr. Mater. 64(6), 576–579 (2011)

    Article  Google Scholar 

  • C.J. Lee, J.C. Huang, P.J. Hsieh, Mg based nano-composites fabricated by friction stir processing. Scr. Mater. 54, 1415–1420 (2006a)

    Article  Google Scholar 

  • C.J. Lee, J.C. Huang, P.L. Hsieh, Compos. Mater. 313, 69 (2006b)

    Google Scholar 

  • Z.Y. Ma, R.S. Mishra, Friction stir surface composite fabrication. Surface engineering: in materials science II, TMS, Warrendale, PA, 2003, p. 243

    Google Scholar 

  • Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplasticity in cast A356 induced via friction stir processing. Scr. Mater. 50(7), 931–935 (2004)

    Article  Google Scholar 

  • Z.Y. Ma, F.C. Liu, R.S. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater. 58(14), 4693–4704 (2010)

    Article  Google Scholar 

  • M. Mahoney, R.S. Mishra, T. Nelson, J. Flintoff, R. Islamgaliev, Y. Hovansky, High strain rate, thick section superplasticity created via friction stir processing. Friction stir welding and processing, Indianapolis, IN, 4–8 Nov 2001, pp. 183–194

    Google Scholar 

  • R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 al alloy. Scr. Mater. 42, 163 (1999)

    Article  Google Scholar 

  • R.S. Mishra, M.W. Mahoney, in Friction Stir Processing: A New Grain Refinement Technique To Achieve High Strain Rate Superplasticity in Commercial Alloys. Superplasticity in Advanced Materials, ICSAM-2000 Materials Science Forum, 357–3 (2001), p. 507

    Google Scholar 

  • R.S. Mishra, M.W. Mahoney, U.S. Patent (6,712,916) on “Metal superplasticity enhancement and forming process,” 30 Mar 2004

    Google Scholar 

  • R.S. Mishra, M.W. Mahoney, Friction Stir Processing, in Friction Stir Welding and Processing, ed. by R.S. Mishra, M.W. Mahoney (ASM International, Materials Park, 2007), pp. 309–350. ISBN-13: 978-0-87170-840-3

    Google Scholar 

  • R.S. Mishra, Friction stir processing for superplasticity. Adv. Mater. Process. 162(2), 45–47 (2004)

    Google Scholar 

  • R.S. Mishra, Integral channels in metal components, U.S. Patent 6,923,362, 2005

    Google Scholar 

  • R.S. Mishra, Z.Y. Ma, I. Charit, Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng. A A341, 307 (2003)

    Article  Google Scholar 

  • R.S. Mishra, M.W. Mahoney, Metal superplasticity enhancement and forming process, U.S. Patent 6,712,916, 30 March 2004

    Google Scholar 

  • Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Structural materials properties microstructure and processing. Mater. Sci. Eng. 419, 344 (2006)

    Article  Google Scholar 

  • Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatig. 16, 163–182 (1994)

    Article  Google Scholar 

  • J.W. Newkirk, R. Mishra, J. Thomas, J.A. Hawk, Friction stir processing to create surface composites. Advances in powder metallurgy & particulate materials, MPIF, Princeton, NJ, 2003, pp. 6.60–6.70

    Google Scholar 

  • T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, UK, 1997)

    Book  Google Scholar 

  • S.K. Panigrahi, K. Kumar, N. Kumar, W. Yuan, R.S. Mishra, R. DeLorme, B. Davis, R.A. Howell, K. Cho, Transition of deformation behavior in an ultrafine grained magnesium alloy. Mater. Sci. Eng. A 549, 123–127 (2012)

    Article  Google Scholar 

  • U. Ramadorai, J.W. Newkirk, R.S. Mishra, J.A. Hawk, Surface Modification of Aluminum Alloys to Create in Situ Surface Composites. 4th ASM International Surface Engineering Congress and 19th International Conference on Surface Modification Technologies, August 2005

    Google Scholar 

  • S.R. Sharma, R.S. Mishra, Fatigue crack growth behavior of friction stir processed aluminum alloy. Scr. Mater. 59(2008), 395–398 (2008)

    Article  Google Scholar 

  • S.R. Sharma, Z.Y. Ma, R.S. Mishra, Effect of friction stir processing on fatigue behavior of A356 alloy. Scr. Mater. 51(3), 237–241 (2004)

    Article  Google Scholar 

  • C.B. Smith, R.S. Mishra, Friction Stir Processing for Enhanced Low Temperature Formability: A Volume in the Friction Stir Welding and Processing Book Series [Paperback] (2014). ISBN-10: 012420113X

    Google Scholar 

  • J.E. Spowart, Z.-Y. Ma, R.S. Mishra, The effect of friction stir processing (FSP) on the spatial heterogeneity of discontinuously-reinforced aluminum (DRA) microstructures. Friction stir welding and processing II, 2003 TMS annual meeting, San Diego, CA, 2–6 Mar 2003, pp. 243–252

    Google Scholar 

  • S. Tandon and R. S. Mishra, unpublished research

    Google Scholar 

  • Y. Wang and R.S. Mishra, Finite element simulation of selective superplastic forming of friction stir processed 7075 Al alloy, Materials Science and Engineering A, 463, 245–248. (2007)

    Article  Google Scholar 

  • W. Yuan, S.K. Panigrahi, J.-Q. Su, R.S. Mishra, Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy. Scr. Mater. 65(11), 994–997 (2011)

    Article  Google Scholar 

  • J. Zheng, R.S. Mishra, P.B. Berbon, M.W. Mahoney, Microstructure and mechanical behavior of friction stir processed Al-Ti-Cu alloy. Friction stir welding and processing, Indianapolis, IN, 4–8 Nov 2001, pp. 235–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, R.S., De, P.S., Kumar, N. (2014). Friction Stir Processing. In: Friction Stir Welding and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-07043-8_9

Download citation

Publish with us

Policies and ethics