Skip to main content

Models for Integer-Valued Time Series

  • Chapter
  • First Online:
  • 3162 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Several other approaches have been proposed in the literature for the analysis of the time series of counts, including static regression models and autoregressive conditional mean models; see Jung and Tremayne (2011) for further details.

  2. 2.

    A r.v. Y (a) is said to be self-generalized with respect to parameter a, if \(P_{Y (a)}(P_{Y (a)}(s; a); a') = P_{Y (a)}(s; \mathit{aa}')\), for all a, a′ ∈ [0, 1].

  3. 3.

    An excellent account for the theory of INAR(1) models with a finite range of counts can be found in Weiß and Kim (2013) and the references therein.

  4. 4.

    The case a ∈ (0, 1) is called the stable case. Ispány et al. (2003) introduced a nearly-unstable INAR(1) model with a n  = 1 −δ n n, and \(\delta _{n} \rightarrow \delta\) as n → .

  5. 5.

    Although for the INAR(1) model the values of the ACF are always non-negative.

  6. 6.

    A discrete distribution in \(\mathbb{N}_{0}\) with probability generating function P(z) is called DSD if \(P(z) = P(1 - a + \mathit{az})P_{a}(z)\) , for |z| < 1 and a ∈ (0, 1), with P a (⋅) being some probability generating function. Alternatively, a non-negative integer-valued random variable X is DSD if for each a ∈ (0, 1) there is a non-negative random variable X a such that \(X\stackrel{d}{=}a \circ X' + X_{a}\) , where a ∘ X′ and X a independent, and X′ is distributed as X.

  7. 7.

    In what follows we will omit the index t below the thinning operator if there is no risk of misinterpretation.

  8. 8.

    Note that condition (5.29) is necessary and sufficient for the existence of such a sequence and of a real sequence (u n ) such that \(k_{n}(1 - F(u_{n})) \rightarrow \tau > 0\), as n → .

  9. 9.

    Results for periodic sequences with exponential-type tails as in (5.30) can be found in Hall and Scotto (2006).

References

  • Ahn S, Gyemin L, Jongwoo J (2000) Analysis of the M/D/1-type queue based on an integer-valued autoregressive process. Oper Res Lett 27:235–241

    Article  MathSciNet  Google Scholar 

  • Al-Osh MA, Aly E-EAA (1992) First order autoregressive time series with negative binomial and geometric marginals. Commun Stat Theory Methods 21:2483–2492

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Osh MA, Alzaid AA (1987) First order integer-valued autoregressive INAR(1) process. J Time Ser Anal 8:261–275

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Osh MA, Alzaid AA (1988) Integer-valued moving average (INMA) process. Stat Pap 29:281–300

    Article  MathSciNet  MATH  Google Scholar 

  • Alosh M (2009) The impact of missing data in a generalized integer-valued autoregression model for count data. J Biopharm Statist 19:1039–1054

    Article  MathSciNet  Google Scholar 

  • Aly E-EAA, Bouzar N (1994) Explicit stationary distributions for some Galton-Watson processes with immigration. Commun Stat Stoch Models 10:499–517

    Article  MathSciNet  MATH  Google Scholar 

  • Aly E-EAA, Bouzar N (2005) Stationary solutions for integer-valued autoregressive processes. Int J Math Math Sci 1:1–18

    Article  MathSciNet  Google Scholar 

  • Alzaid AA, Al-Osh MA (1988) First-order integer-valued autoregressive process: distributional and regression properties. Stat Neerl 42:53–61

    Article  MathSciNet  MATH  Google Scholar 

  • Alzaid AA, Al-Osh MA (1990) An integer-valued pth-order autoregressive structure (INAR(p)) process. J Appl Probab 27:314–324

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson CW (1970) Extreme value theory for a class of discrete distributions with applications to some stochastic processes J Appl Probab 7:99–113

    Article  MATH  Google Scholar 

  • Andersson J, Karlis D (2010) Treating missing values in INAR(1) models: An application to syndromic surveillance data. J Time Ser Anal 31:12–19

    Article  MathSciNet  MATH  Google Scholar 

  • Bakouch HS, Ristić MM (2010) Zero truncated Poisson integer-valued AR(1) model. Metrika 72:265–280

    Article  MathSciNet  MATH  Google Scholar 

  • Blundell R, Griffith R, Windmeijer F (2002) Individual effects and dynamics in count data models. J Econom 108:113–131

    Article  MathSciNet  MATH  Google Scholar 

  • Brännäs K (1995) Explanatory variables in the AR(1) count data model. Umeå Econ Stud 381:1–22

    Google Scholar 

  • Brännäs K, Hall A (2001) Estimation in integer-valued moving average models. Appl Stoch Models Bus Ind 17:277–291

    Article  MathSciNet  MATH  Google Scholar 

  • Brännäs K, Hellström J (2001) Generalized integer-valued autoregression. Econom Rev 20:425–443

    Article  MATH  Google Scholar 

  • Brännäs K, Nordström J (2006) Tourist accommodation effects of festivals. Tour Econ 12:291–302

    Article  Google Scholar 

  • Brännäs K, Hellström J, Nordström J (2002) A new approach to modelling and forecasting monthly guest nights in hotels. Int J Forecast 18:19–30

    Article  Google Scholar 

  • Brooks SP, Giudici P, Roberts GO (2003) Efficient construction of reversible jump Markov chain Monte Carlo proposal distribution. J R Stat Soc B 65:3–55. (With discussion)

    Google Scholar 

  • Bu R, McCabe BPM, Hadri K (2008) Maximum likelihood estimation of higher-order integer-valued autoregressive processes. J Time Ser Anal 29:973–994

    Article  MathSciNet  MATH  Google Scholar 

  • Cui Y, Lund R (2009) A new look at time series of counts. Biometrika 96:781–792

    Article  MathSciNet  MATH  Google Scholar 

  • Du J-G, Li Y (1991) The integer valued autoregressive (INAR(p)) model. J Time Ser Anal 12:129–142

    Article  MathSciNet  MATH  Google Scholar 

  • Enciso-Mora V, Neal P, Subba Rao T (2009) Efficient order selection algorithms for integer-valued ARMA processes. J Time Ser Anal 30:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K (2011) Some recent progress in count time series. Stat Pap 45:49–58

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K, Rahbek A, Tjøstheim D (2009) Poisson autoregression. J Am Stat Assoc 104:1430–1439

    Article  MATH  Google Scholar 

  • Freeland RK, McCabe B (2005) Asymptotic properties of CLS estimators in the Poisson AR(1) model. Stat Probab Lett 73:147–153

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia-Ferrer A, Queralt RA (1997) A note on forecasting international tourism deman in Spain. Int J Forecast 13:539–549

    Article  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, New York, pp 169–194. (With discussion)

    Google Scholar 

  • Gomes D, Canto e Castro L (2009) Generalized integer-valued random coefficient for a first order structure autoregressive (RCINAR) process. J Stat Plann Inference 139:4088–4097

    Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A (1996) Maximum term of a particular autoregressive sequence with discrete margins. Commun Stat Theory Methods 25:721–736

    Article  MATH  Google Scholar 

  • Hall A (2001) Extremes of integer-valued moving averages models with regularly varying tails. Extremes 4:219–239

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A (2003) Extremes of integer-valued moving averages models with exponential type-tails. Extremes 6:361–379

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Moreira O (2006) A note on the extremes of a particular moving average count data model. Stat Probab Lett 76:135–141

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Scotto MG (2003) Extremes of sub-sampled integer-valued moving average models with heavy-tailed innovations. Stat Probab Lett 63:97–105

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Scotto MG (2006) Extremes of periodic integer-valued sequences with exponential type tails. REVSTAT 4:249–273

    MathSciNet  MATH  Google Scholar 

  • Hall A, Scotto MG (2008) On the extremes of randomly sub-sampled time series. REVSTAT 6:151–164

    MathSciNet  Google Scholar 

  • Hall A, Temido MG (2007) On the maximum term of MA and max-AR models with margins in Anderson’́s class. Theory Probab Appl 51:291–304

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Temido MG (2009) On the max-semistable limit of maxima of stationary sequences with missing values. J Stat Plan Inference 139:875–890

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Temido MG (2012) On the maximum of periodic integer-valued sequences with exponential type tails via max-semistable laws. J Stat Plan Inference 142:1824–1836

    Article  MATH  Google Scholar 

  • Hall A, Scotto MG, Ferreira H (2004) On the extremal behaviour of generalised periodic sub-sampled moving average models with regularly varying tails. Extremes 7:149–160

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Scotto MG, Cruz JP (2010) Extremes of integer-valued moving average sequences. Test 19:359–374

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its application. Academic, New-York/London

    MATH  Google Scholar 

  • Hooghiemstra G, Meester LE, Hüsler J (1998) On the extremal index for the MMs queue. Commun Stat Stoch Models 14:611–621

    Article  MATH  Google Scholar 

  • Ispány M, Pap G, van Zuijlen MCA (2003) Asymptotic inference for nearly unstable INAR(1) models. J Appl Probab 40:750–765

    Article  MathSciNet  MATH  Google Scholar 

  • Joe H (1996) Time series models with univariate margins in the convolution-closed infinitely divisible class. J Appl Probab 33:664–677

    Article  MathSciNet  MATH  Google Scholar 

  • Jung RC, Tremayne AR (2006) Binomial thinning models for integer time series. Stat Model 6:81–96

    Article  MathSciNet  Google Scholar 

  • Jung RC, Tremayne AR (2011) Useful models for time series of counts or simply wrong ones? Adv Stat Anal 95:59–91

    Article  MathSciNet  Google Scholar 

  • Jung RC, Ronning G, Tremayne AR (2005) Estimation in conditional first order autoregresion with discrete support. Stat Pap 46:195–224

    Article  MathSciNet  MATH  Google Scholar 

  • Kedem B, Fokianos K (2002) Regression Models for Time Series Analysis. John Wiley & Sons, New York

    Book  MATH  Google Scholar 

  • Kim HY, Park Y (2008) A non-stationary integer-valued autoregressive model. Stat Pap 49:485–502

    Article  MATH  Google Scholar 

  • Lambert D, Liu C (2006) Adaptive thresholds: monitoring streams of network counts. J Am Stat Assoc 101:78–88

    Article  MathSciNet  MATH  Google Scholar 

  • Latour A (1998) Existence and stochastic structure of a non-negative integer-valued autoregressive processes. J Time Ser Anal 4:439–455

    Article  MathSciNet  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  MATH  Google Scholar 

  • Leonenko NN, Savani V, Zhigljavsky AA (2007) Autoregressive negative binomial processes. Ann de l’I.S.U.P LI:25–47

    Google Scholar 

  • McCabe BPM, Martin GM (2005) Bayesian prediction of low count time series. Int J Forecast 21:315–330

    Article  Google Scholar 

  • McCormick WP, Park YS (1992) Asymptotic analysis of extremes from autoregressive negative binomial processes. J Appl Probab 29:904–920

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie E (1985) Some simple models for discrete variate time series. Water Res Bull 21:645–650

    Article  Google Scholar 

  • McKenzie E (1986) Autoregressive analysis of extremes from autoregressive negative binomial processes. J Appl Probab 29:904–920

    Google Scholar 

  • McKenzie E (1988) Some ARMA models for dependent sequences of Poisson counts. Adv Appl Probab 20:822–835

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie E (2003) Discrete variate time series. In: Rao CR, Shanbhag DN (eds) Handbook of statistics. Elsevier, Amsterdam, pp 573–606

    Google Scholar 

  • Monteiro M, Pereira I, Scotto MG (2008) Optimal alarm systems for count processes. Commun Stat Theory Methods 37:3054–3076

    Article  MathSciNet  MATH  Google Scholar 

  • Monteiro M, Scotto MG, Pereira I (2010) Integer-valued autoregressive processes with periodic structure. J Stat Plan Inference 140:1529–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Monteiro M, Scotto MG, Pereira I (2012) Integer-valued self-exciting threshold autoregressive processes. Commun Stat Theory Methods 41:2717–2737

    Article  MathSciNet  MATH  Google Scholar 

  • Moriña D, Puig P, Ríos J, Vilella A, Trilla A (2011) A statistical model for hospital admissions caused by seasonal diseases. Stat Med 30:3125–3136

    Article  MathSciNet  Google Scholar 

  • Neal P, Subba Rao T (2007) MCMC for integer-valued ARMA processes. J Time Ser Anal 28:92–110

    Article  MathSciNet  MATH  Google Scholar 

  • Nordström J (1996) Tourism satellite account for Sweden 1992–93. Tour Econ 2:13–42

    Google Scholar 

  • Quoreshi AMMS (2006) Bivariate time series modelling of financial count data. Commun Stat Theory Methods 35:1343–1358

    Article  MathSciNet  MATH  Google Scholar 

  • Raftery AE, Lewis S (1992) How many interactions in the Gibbs sampler? In: Bernardo JM, Berger JO, Dawin AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, New York, pp 763–773

    Google Scholar 

  • Ristić MM, Bakouch HS, Nastić AS (2009) A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J Stat Plan Inference 139:2218–2226

    Article  MATH  Google Scholar 

  • Ristić MM, Nastić AS, Miletić Ilić AV (2013) A geometric time series model with dependent Bernoulli counting series. J Time Ser Anal 34:466–476

    Article  MATH  Google Scholar 

  • Roitershtein A, Zhong Z (2013) On random coefficient INAR(1) processes. Sci China Math 56:177–200

    Article  MathSciNet  MATH  Google Scholar 

  • Rudholm N (2001) Entry and the number of firms in the Swedish pharmaceutical market. Rev Ind Organ 19:351–364

    Article  Google Scholar 

  • Scotto MG, Weiß CH, Silva ME, Pereira I (2014) Bivariate binomial autoregressive models. J Multivariate Anal 125:233–251

    Google Scholar 

  • Silva I, Silva ME, Pereira I, Silva N (2005) Replicated INAR(1) processes. Methodol Comput Appl Probab 7:517–542

    Article  MathSciNet  MATH  Google Scholar 

  • Steutel FW, van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7:893–899

    Article  MathSciNet  MATH  Google Scholar 

  • Thyregod P, Carstensen J, Madsen H, Arnbjerg-Nielsen K (1999) Integer valued autoregressive models for tipping bucket rainfall measurements. Environmetrics 10:395–411

    Article  Google Scholar 

  • Tjøstheim D (2012) Some recent theory for autoregressive count time series. Test 21:413–438. (With discussion)

    Google Scholar 

  • Villarini G, Vecchi, GA, Smith JA (2010) Modeling of the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Wea Rev 137:2681–2705

    Article  Google Scholar 

  • Weiß CH (2007) Controlling correlated processes of Poisson counts. Qual Reliab Eng Int 23:741–754

    Article  Google Scholar 

  • Weiß CH (2008a) The combined INAR(p) models for time series of counts. Stat Probab Lett 78:1817–1822

    Article  MATH  Google Scholar 

  • Weiß CH (2008b) Thinning operations for modelling time series of counts–a survey. Adv Stat Anal 92:319–341

    Article  Google Scholar 

  • Weiß CH (2008c) Serial dependence and regression of Poisson INARMA models. J Stat Plan Inference 138:2975–2990

    Article  MATH  Google Scholar 

  • Weiß CH (2009) Modelling time series of counts with overdispersion. Stat Methods Appl 18:507–519

    Article  MathSciNet  Google Scholar 

  • Weiß CH (2013) Integer-valued autoregressive models for counts showing underdispersion. J Appl Stat 40:1931–1948

    Article  Google Scholar 

  • Weiß CH, Kim HY (2013) Binomial AR(1) processes: moments, cumulants, and estimation. Statistics 47:494–510

    Article  MathSciNet  MATH  Google Scholar 

  • Ye N, Giordano J, Feldman J (2001) A process control approach to cyber attack detection. Commun ACM 44:76–82

    Article  Google Scholar 

  • Yu X, Baron M, Choudhary PK (2013) Change-point detection in binomial thinning processes, with applications in epidemiology. Sequential Anal 32:350–367

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Wang D, Zhu F (2010) Inference for INAR(p) processes with signed generalized power series thinning operator. J Stat Plan Inference 140:667–683

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng HT, Basawa IV, Datta S (2006) Inference for pth-order random coefficient integer-valued autoregressive processes. J Time Ser Anal 27:411–440

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng HT, Basawa IV, Datta S (2007) First-order random coefficient integer-valued autoregressive processes. J Stat Plan Inference 173:212–229

    Article  MathSciNet  Google Scholar 

  • Zhou J, Basawa IV (2005) Least-squared estimation for bifurcation autoregressive processes. Stat Probab Lett 74:77–88

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu R, Joe H (2003) A new type of discrete self-decomposability and its applications to continuous-time Markov processes for modeling count data time series. Stoch Models 19:235–254

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu R, Joe H (2006) Modelling count data time series with Markov processes based on binomial thinning. J Time Ser Anal 27:725–738

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu R, Joe H (2010) Negative binomial time series models based on expectation thinning operators. J Stat Plan Inference 140:1874–1888

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turkman, K.F., Scotto, M.G., de Zea Bermudez, P. (2014). Models for Integer-Valued Time Series. In: Non-Linear Time Series. Springer, Cham. https://doi.org/10.1007/978-3-319-07028-5_5

Download citation

Publish with us

Policies and ethics