Skip to main content

Inference for Nonlinear Time Series Models

  • Chapter
  • First Online:
Non-Linear Time Series

Abstract

Suppose we have an observed time series \(x_{1},x_{2},\ldots,x_{n}\) and want to know if a linear time series model is adequate for the data, or an alternative nonlinear model should be considered. Linear models are often taken as the null hypotheses against a nonlinear alternative due to the simplicity of inference. Often we know much about the underlying process which generate the data set. Therefore it is possible to decide if a linear model will be adequate and if not, what aspects of nonlinearity should be modeled as alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bauwens and Lubrano (1998) use trapezoidal rule of integration.

References

  • Aase KK (1983) Recursive estimation in non-linear time series models of autoregressive type. J R Stat Soc B 45:228–237

    MathSciNet  MATH  Google Scholar 

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat Soc B 72:269–342

    Article  MathSciNet  Google Scholar 

  • Ardia D (2008) Financial risk management with Bayesian estimation of GARCH models: theory and applications. Lecture notes in economics and mathematical systems, vol 612. Springer, Berlin

    Google Scholar 

  • Asai M (2006) Comparison of MCMC methods for estimating GARCH models. J Jpn Stat Soc 36:199–212

    Article  MathSciNet  MATH  Google Scholar 

  • Bauwens L, Lubrano M (1998) Bayesian inference on GARCH models using the Gibbs sampler. Econom J 1:C23–C46

    Article  Google Scholar 

  • Bauwens L, Rombouts JVK (2007) Bayesian inference for the mixed conditional heteroskedasticity model. Econom J 10:408–425

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  • Bera AK, Higgins ML (1997) ARCH and bilinearity as competing models for nonlinear dependence. J Bus Econ Stat 15:43–50

    Google Scholar 

  • Bera A, Bilias Y, Simlai P (2006) Estimating functions and equations: an essay on historical developments with applications to econometrics. In: Mills TC, Patterson K (eds) Palgrave handbook of econometrics. Econometric theory, Palgrave MacMillan, vol 1, pp 427–476

    Google Scholar 

  • Berkes I, Horváth L, Kokoszka P (2003) GARCH processes: structure and estimation. Bernoulli 9:201–227

    Article  MathSciNet  MATH  Google Scholar 

  • Biau G, Cérou F, Guyader A (2012) New insights into Approximate Bayesian Computation. Ann Inst Henri Poincaré B, (to appear)

    Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31:307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Brock WA, Dechert WD, Scheinkman JA, LeBaron B (1996) A test for independence based on the correlation dimension. Econom Rev 15:197–235

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, New York

    Google Scholar 

  • Brockwell PJ, Davis RA (1996) Introduction to time series and forecasting. Springer, New York

    Book  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (2006) Time series: theory and methods, 2nd edn. Springer, New York

    Google Scholar 

  • Carlin BP, Thomas AL (2009) Bayesian methods for data analysis, 3rd edn. CRC, Boca Raton

    Google Scholar 

  • Chan NH, Ng CT (2009) Statistical inference for non-stationary GARCH(p, q) models. Electron J Stat 3:956–992

    Article  MathSciNet  MATH  Google Scholar 

  • Chib S, Greenberg E (1994) Bayes inference in regression models with ARMA(p, q) errors. J Econom 64:183–206

    Article  MathSciNet  MATH  Google Scholar 

  • Chopin N, Jacob PE, Papaspiliopoulos O (2013) SMC2: an efficient algorithm for sequential analysis of state space models. J R Stat Soc B 75:397–426

    Article  MathSciNet  Google Scholar 

  • Coles SG (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  MATH  Google Scholar 

  • Congdon P, (2010) Applied bayesian hierarchical methods. Chapman & Hall/CRC

    Book  MATH  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR, Reid N (2004) A note on pseudo-likelihood constructed from marginal densities. Biometrika 91:729–737

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus R, Rao SS (2006) Statistical inference for time-varying ARCH processes. Ann Stat 34:1075–1114

    Article  MATH  Google Scholar 

  • Davis RA, Yau CY (2011) Comments on pairwise likelihood in time series models. Stat Sin 21:255–277

    MathSciNet  MATH  Google Scholar 

  • Davison A, Gholamrezaee M (2012) Geostatistics of extremes. Proc R Soc Lond Ser A Math Phys Eng Sci 468:581–608

    Article  MathSciNet  Google Scholar 

  • Dzhaparidze KO, Yaglom AM (1983) Spectrum parameter estimation in time series analysis. Developments in statistics, vol 4. Academic, New York

    Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch, T (1997) Modelling Extremal Events for Insurance and Finance. Springer-Verlag, Heildelberg

    Book  MATH  Google Scholar 

  • Fearnhead P (2008) Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Stat Comput 18:151–171

    Article  MathSciNet  Google Scholar 

  • Francq C, Zakoïan J-M (2008) Can one really estimate nonstationary GARCH models? Working paper 2008–06, Centre de Recherche en Economie et Statistique

    Google Scholar 

  • Gelfand E, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman A, Rubin DB (1992) A single series from the Gibbs sampler provides a false sense of security. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 4. Oxford University Press, Oxford, pp 625–631

    Google Scholar 

  • Geweke J (1989) Exact predictive densities for linear models with ARCH disturbances. J Econom 40:63–86

    Article  MathSciNet  MATH  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 4. Oxford University Press, Oxford, pp 169–194 (with discussion)

    Google Scholar 

  • Geweke J (1994) Bayesian comparison of econometric models. Working paper 532, Research Department, Federal Reserve Bank of Minneapolis

    Google Scholar 

  • Giraitis L, Robinson PM (2001) Whittle estimation of ARCH models. Econom Theory 17:608–631

    Article  MathSciNet  MATH  Google Scholar 

  • Glosten L, Jagannathan R, Runkle D (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. J Finance 48:1779–1801

    Article  Google Scholar 

  • Godambe VP (1960) An optimum property of regular maximum likelihood estimation. Ann Math Stat 31:1208–1211

    Article  MathSciNet  Google Scholar 

  • Godambe VP (1985) The foundations of finite sample estimation in stochastic processes. Biometrika 72:419–428

    Article  MathSciNet  MATH  Google Scholar 

  • Godambe VP (1991) Estimating functions. Oxford University Press, New York

    MATH  Google Scholar 

  • Granger CWJ, Andersen A (1978) On the invertability of time series models. Stoch Proc Appl 8:87–92

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Yao Q (2003) Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica 71:285–317

    Article  MathSciNet  MATH  Google Scholar 

  • Hannan EJ (1970) Multiple time series. Wiley, New York

    Book  MATH  Google Scholar 

  • Heyde CC (1997) Quasi-likelihood and its application: a general approach to optimal parameter estimation. Springer, New York

    Book  MATH  Google Scholar 

  • Hinich MJ (1982) Testing for Gaussianity and linearity of a stationary time series. J Time Ser Anal 3:169–176

    Article  MathSciNet  MATH  Google Scholar 

  • Huang D, Wang H, Yao Q (2008) Estimating GARCH models: when to use what? Econom J 11:27–38

    Article  MATH  Google Scholar 

  • Jensen ST, Rahbek A (2004a) Asymptotic normality of the QMLE estimator of ARCH in the nonstationary case. Econometrica 72:641–646

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen ST, Rahbek A (2004b) Asymptotic inference for nonstationary GARCH. Econom Theory 20:1203–1226

    MathSciNet  MATH  Google Scholar 

  • Keenan DM (1985) A Tukey nonadditivity-type test for time series nonlinearity. Biometrika 72:39–44

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly FP (1979) Reversibility and stochastic networks. Wiley, Chichester

    MATH  Google Scholar 

  • Kleibergen F, van Dijk HK (1993) Non-stationarity in GARCH models: a Bayesian analysis. J Appl Econom 8(Suppl):41–61

    Article  Google Scholar 

  • Klüppelberg C, Lindner A, Maller R (2004) A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour. J Appl Probab 41:601–622

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SW, Hansen BE (1994) Asymptotic theory for the GARCH(1, 1) quasi-maximum likelihood estimator. Econom Theory 10:29–52

    Article  MathSciNet  MATH  Google Scholar 

  • Liang F, Liu C, Caroll R (2010) Advanced Markov chain Monte Carlo methods: learning from Past samples. Wiley, New York

    Book  Google Scholar 

  • Lumsdaine R (1996) Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1, 1) and covariance stationary GARCH(1, 1) models. Econometrica 64:575–596

    Article  MathSciNet  MATH  Google Scholar 

  • Luukkonen R, Saikkonen P, Teräsvirta T (1988) Testing linearity against smooth transition autoregressive models. Biometrika 75:491–499

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV, Kent JT, Hughes G, Taylor CC (2009) Maximum likelihood estimation using composite likelihoods for closed exponential families. Biometrika 96:975–982

    Article  MathSciNet  MATH  Google Scholar 

  • Mauricio JA (2008) Computing and using residuals in time series models. Comput Stat Data Anal 52:1746–1763

    Article  MathSciNet  MATH  Google Scholar 

  • McLeod AI, Li WK (1983) Diagnostic checking of ARMA time series models using squared residual autocorrelations. J Time Ser Anal 4:269–273

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn S, Tweedie RL (2009) Markov chains and stochastic stability. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Miazhynskaia T, Dorffner G (2006) A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models. Stat Pap 47:525–549

    Article  MathSciNet  MATH  Google Scholar 

  • Mikosch T, Straumann T (2002) Whittle estimation in a heavy-tailed GARCH(1, 1) model. Stoch Process Appl 100:187–222

    Article  MathSciNet  MATH  Google Scholar 

  • Mikosch T, Straumann T (2006) Stable limits of martingale transforms with application to the estimation of GARCH parameters. Ann Stat 34:493–522

    Article  MathSciNet  Google Scholar 

  • Mitsui H, Watanabe T (2003) Bayesian analysis of GARCH option pricing models. J Jpn Stat Soc 33:307–324

    MathSciNet  MATH  Google Scholar 

  • Nakatsuma T (1998) A Markov-chain sampling algorithm for GARCH models. Stud Nonlinear Dyn Econom 3:107–117

    Google Scholar 

  • Nakatsuma T (2000) Bayesian analysis of ARMA-GARCH models: a Markov chain sampling approach. J Econom 95:57–69

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 2:347–370

    Article  Google Scholar 

  • Nicholls DF, Quinn BG (1980) The estimation of autoregressive models with random coefficients. J Time Ser Anal 13:914–931

    MathSciNet  Google Scholar 

  • Nummelin E (1984) General irreducible Markov chains and non-negative operators. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Peat M, Stevenson M (1996) Asymmetry in the business cycle: Evidence from the Australian labour market. J Econ Behav Organ 30:353–368

    Article  Google Scholar 

  • Peng L, Yao Q (2003) Least absolute deviations estimation for ARCH and GARCH models. Biometrika 90:967–75

    Article  MathSciNet  Google Scholar 

  • Petruccelli JD, Davies N (1986) A portmanteau test for self-exciting threshold autoregressive-type nonlinearity in time series. Biometrika 73:687–694

    Article  MathSciNet  MATH  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  MathSciNet  MATH  Google Scholar 

  • Plagnol V, Tavaré S (2003) Approximate Bayesian computation and MCMC. In: Niederreiter H (ed) Monte Carlo and quasi-Monte Carlo methods. Springer, Heidelberg

    Google Scholar 

  • Prado R, West M (2010) Time series: modeling, computation, and inference. Texts in statistical science. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic, London

    MATH  Google Scholar 

  • Quinn BG (1982) Stationarity and invertibility of simple bilinear models. Stoch Process Appl 12:225–230

    Article  MathSciNet  MATH  Google Scholar 

  • Ritter C, Tanner MA (1992) The Gibbs stopper and the Griddy Gibbs sampler. J Am Stat Assoc 87:861–868

    Article  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Roberts GO, Rosenthal JS (2004) General state space Markov chains and MCMC algorithms. Probab Surv 1:20–71

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson PM, Zaffaroni P (2006) Pseudo-maximum likelihood estimation of ARCH() models. Ann Stat 34:1049–1074

    Article  MathSciNet  MATH  Google Scholar 

  • Straumann D, Mikosch T (2006) Quasi-MLE in heteroscedastic times series: a stochastic recurrence equations approach. Ann Stat 34:2449–2495

    Article  MathSciNet  MATH  Google Scholar 

  • Subba Rao T, Gabr MM (1980) A test for linearity of stationary time series. J Time Ser Anal 1:145–158

    Article  MathSciNet  MATH  Google Scholar 

  • Subba Rao T, Gabr MM (1984) An introduction to bispectral analysis and bilinear time series models. Springer, New York

    MATH  Google Scholar 

  • Thavaneswaran A, Abraham B (1988) Estimation for non-linear time series models using estimating equations. J Time Ser Anal 9:99–108

    Article  MathSciNet  MATH  Google Scholar 

  • Tjøstheim D (1986) Some doubly stochastic time series models. J Time Ser Anal 7:51–72

    Article  MathSciNet  Google Scholar 

  • Tjøstheim D (1990) Non-linear time series and Markov chains. Adv Appl Probab 22:587–611

    Article  Google Scholar 

  • Tong H (1990) Non-linear time series. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Tsay RS (1989) Testing and modeling threshold autoregressive processes. J Am Stat Assoc 84:231–240

    Article  MathSciNet  MATH  Google Scholar 

  • Tsay RS (1991) Detecting and modelling nonlinearity in univariate time series analysis. Stat Sin 1:431–451

    MathSciNet  MATH  Google Scholar 

  • Varin C, Vidoni P (2009) Pairwise likelihood inference for general state space models. Econom Rev 28:170–185

    Article  MathSciNet  MATH  Google Scholar 

  • Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Stat Sin 21:5–43

    MathSciNet  MATH  Google Scholar 

  • Vrontos ID, Dellaportas P, Politis D (2000) Full Bayesian inference for GARCH and EGARCH models. J Bus Econom Stat 18:187–198

    Google Scholar 

  • Weiss A (1986) Asymptotic theory for ARCH models: estimation and testing. Econom Theory 2:107–131

    Article  Google Scholar 

  • Wilkinson RD (2008) Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Technical report, Sheffield University

    Google Scholar 

  • Yu B, Mykland P (1998) Looking at Markov samplers through CUMSUM path plots: a simple diagnostic idea. Stat Comput 8:275–286

    Article  Google Scholar 

  • Zaffaroni P (2009) Whittle estimation of EGARCH and other exponential volatility models. J Econom 151:190–200

    Article  MathSciNet  Google Scholar 

  • Zellner A, Min C (1995) Gibbs sampler convergence criteria. J Am Stat Assoc 90:921–927

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turkman, K.F., Scotto, M.G., de Zea Bermudez, P. (2014). Inference for Nonlinear Time Series Models. In: Non-Linear Time Series. Springer, Cham. https://doi.org/10.1007/978-3-319-07028-5_4

Download citation

Publish with us

Policies and ethics