Skip to main content

Extremes of Nonlinear Time Series

  • Chapter
  • First Online:
Book cover Non-Linear Time Series

Abstract

We have seen in Sect. 2.1.4 that nonlinear processes, due to their dependence on initial conditions, often magnify error causing unstable behavior. Even when stationary solutions exist, this noise magnification and dependence on initial conditions reflects on the tails of the stationary distribution, as well as on how large values cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Extensions of Goldie and Grbel’s results, namely the connection between the tails of R and the behavior of A near 1, can be found in Hitczenko and Wesolowski (2009).

References

  • Andrews B, Calder M, Davis RA (2009) Maximum likelihood estimation for α-stable autoregressive processes. Ann Stat 37:1946–1982

    Article  MathSciNet  MATH  Google Scholar 

  • Basrak B, Davis RA, Mikosch T (2002) Regular variation of GARCH processes. Stoch Process Appl 99:95–115

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  • Bougerol P, Picard N (1992) Strict stationarity of generalized autoregressive processes. Ann Probab 20:1714–1730

    Article  MathSciNet  MATH  Google Scholar 

  • Brandt A (1986) The stochastic equation \(Y _{n+1} = A_{n}Y _{n} + B_{n}\) with stationary coefficients. Adv Appl Probab 18:211–220

    Article  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, New York

    Google Scholar 

  • Calder M, Davis RA (1998) Inference for linear processes with stable noise. In: Adler RJ, Feldman RE, Taqqu MS (eds) A practical guide to heavy tails. Birkhäuser, Boston, pp 159–176

    Google Scholar 

  • Cline D (1983) Estimation and linear prediction for regression, autoregression and ARMA with infinite varaiance data. Ph.D. Theses, Dept. of Statistics, Colorado State University, Fort Collins

    Google Scholar 

  • Davis RA (1996) Gauss-Newton and M-estimation for ARMA processes with infinite variance. Stoch Process Appl 63:75–95

    Article  MATH  Google Scholar 

  • Davis RA, Resnick SI (1985) Limit theory for moving averages of random variables with regularly varying tail probability. Ann Probab 13:179–195

    Article  MathSciNet  MATH  Google Scholar 

  • Davis RA, Resnick SI (1996) Limit theory for bilinear processes with heavy tailed noise. Ann Appl Probab 6:1191–1210

    Article  MathSciNet  MATH  Google Scholar 

  • Draisma G, Drees H, Ferreira A, de Haan L (2004) Bivariate tail estimation; dependence in asymptotic independence. Bernoulli 10:251–280; 25:721–736

    Google Scholar 

  • Drees H, Rootzen H (2010) Limit theorems for empirical processes of cluster functionals. Ann Stat 38:2145–2186

    Article  MathSciNet  MATH  Google Scholar 

  • Embrechts P, Goldie C (1994) Perpetuities and random equations. In: Mandl P, Huskova M (eds) Asymptotic statistics: proceedings of fifth Prague symposium. Physica, Heidelbeg, pp 75–86

    Chapter  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Heildelberg

    Book  MATH  Google Scholar 

  • Goldie CM (1991) Implicit renewal theory and tails of solutions of random equations. Ann Appl Probab 1:126–166

    Article  MathSciNet  MATH  Google Scholar 

  • Goldie CM, Grübel R (1996) Perpetuities with thin tails. Adv Appl Probab 28:463–480

    Article  MATH  Google Scholar 

  • Grey DR (1994) Regular variation in the tail behaviour of solutions of random difference equations. Ann Appl Probab 4:169–183

    Article  MathSciNet  MATH  Google Scholar 

  • Grincevicčius AK (1975) One limit distribution for a random walk on the line. Lithuanian Math J 15:580–589. (English translation)

    Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163–1174

    Article  MATH  Google Scholar 

  • Hitczenko P, Wesolowski J (2009) Perpetuities with thin tails revisited. Ann. Appl. Probab. 19:2080–2101

    Article  MathSciNet  MATH  Google Scholar 

  • Kesten H (1973) Random difference equations and renewal theory for products of random matrices. Acta Math 131:207–248

    Article  MathSciNet  MATH  Google Scholar 

  • Klüppelberg C, Lindner A (2005) Extreme value theory for moving average processes with light-tailed innovations. Bernoulli 11:381–410

    Article  MathSciNet  MATH  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  MATH  Google Scholar 

  • Ledford AW, Tawn JA (1996) Statistics for near dependence in multivariate extreme values. Biometrika 83:169–187

    Article  MathSciNet  MATH  Google Scholar 

  • Mathews VJ, Sicuranza GL (2000) Polynomial signal processing. Wiley, New York

    Google Scholar 

  • Pham DT (1985) Bilinear Markovian representation and bilinear model. Stoch Proc Appl 20:295–306

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick SI (1987) Extreme values, regular variation and point processes. Springer, New York

    Book  MATH  Google Scholar 

  • Resnick SI (1998) Why non-linearities can ruin the heavy-tailed modeler’s day. In: Adler RJ, Feldman RE, Taqqu MS (eds) A practical guide to heavy tails. Birkhäuser, Boston, pp 219–239

    Google Scholar 

  • Resnick SI (2007) Heavy-tail phenomena: probabilistic and statistical modeling. Springer, New York

    Google Scholar 

  • Resnick SI, Van den Berg E (2000) Sample correlation behaviour for the heavy tailed general bilinear process. Stoch Models 16:233–258

    Article  MATH  Google Scholar 

  • Rootzén H (1986) Extreme value theory for moving average processes. Ann Probab 14:612–652

    Article  MathSciNet  MATH  Google Scholar 

  • Scotto MG, Turkman KF (2005) Extremes of Volterra series expansions with heavy-tailed innovations. Nonlinear Anal Theory Methods Appl 63:106–122

    Article  MathSciNet  MATH  Google Scholar 

  • Subba Rao T, Gabr MM (1984) An introduction to bispectral analysis and bilinear time series models. Springer, New York

    MATH  Google Scholar 

  • Turkman KF, Amaral Turkman MA (1997) Extremes of bilinear time series models. J Time Ser Anal 18:305–320

    Article  MathSciNet  MATH  Google Scholar 

  • Vervaat W (1979) On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv Appl Probab 11:750–783

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turkman, K.F., Scotto, M.G., de Zea Bermudez, P. (2014). Extremes of Nonlinear Time Series. In: Non-Linear Time Series. Springer, Cham. https://doi.org/10.1007/978-3-319-07028-5_3

Download citation

Publish with us

Policies and ethics