Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 286))

  • 1322 Accesses

Abstract

Physical process of blurring emergence has been analyzed. It has been proved through conducted experiments that image blurring formation is adequately described by the model based on convolution, i. e. wrapping. It is shown that blurring center or discrete function of point scattering comprises information about trajectory and uniformity of motion, which has caused an image distortion. It determined that extreme values number of averaged normalized column values of Fourier image is distorted by artificial blurring correlates with parameters of blurring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuon, S.: The Nature of Motion Blur, http://ai.stanford.edu/~schuon/deblur/download/schuon_nature_of_motion_blur.pdf

  2. Oliveira, J.P., Figueiredo, M.A.T., Bioucas-Dias, J.M.: Blind estimation of motion blur parameters for image deconvolution. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 604–611. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Molina, R., Mateos, J., Katsaggelos, A.K.: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Transactions on Image Processing 15(12), 3715–3727 (2006)

    Article  MathSciNet  Google Scholar 

  4. Lucy, B.: An iterative technique for the rectification of observed distributions. Astronomical Journal 79(6), 745–754 (1974)

    Article  Google Scholar 

  5. Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction, 3rd edn., p. 453. John Wiley & Sons Ltd. (2006)

    Google Scholar 

  6. Бузовский О.В. Компьютерная обработка изображений/ О. В. Бузовский. – Киев: Корнийчук, 79c (2001)

    Google Scholar 

  7. Васьков С. Т. Быстрая цифровая реконструкция сигналов и изображений по критерию минимума энергии/ С. Т. Васьков, В. М. Ефимов, А. Л. Резник// Автометрия 39(4), 14–20 (2003)

    Google Scholar 

  8. ЮжиковВ.BlindDeconvolution — автоматическое восстановление смазанныхзображений. Режим доступу, http://habrahabr.ru/post/175717/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peleshko, D., Rashkevych, M., Klyuvak, A., Ivanov, Y. (2014). Partial Blur: Model, Detection, Deblurring. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland. Advances in Intelligent Systems and Computing, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-319-07013-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07013-1_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07012-4

  • Online ISBN: 978-3-319-07013-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics