Skip to main content

Primal MINLP Heuristics in a Nutshell

  • Conference paper
  • First Online:
Operations Research Proceedings 2013

Part of the book series: Operations Research Proceedings ((ORP))

  • 1609 Accesses

Abstract

Primal heuristics are an important component of state-of-the-art codes for mixed integer nonlinear programming (MINLP). In this article we give a compact overview of primal heuristics for MINLP that have been suggested in the literature of recent years. We sketch the fundamental concepts of different classes of heuristics and discuss specific implementations. A brief computational experiment shows that primal heuristics play a key role in achieving feasibility and finding good primal bounds within a global MINLP solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achterberg, T., & Berthold, T. (2007). Improving the feasibility pump. Discrete Optimization, Special Issue, 4(1), 77–86.

    Article  Google Scholar 

  2. Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1), 1–41.

    Article  Google Scholar 

  3. Achterberg, T., Berthold, T., & Hendel, G. (2012). Rounding and propagation heuristics for mixed integer programming. In D. Klatte, H.-J. Luthi, & K. Schmedders (Eds.), Operations research proceedings 2011 (pp. 71–76). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  4. Berthold, T. (2006). Primal heuristics for mixed integer programs. Diploma thesis, Technische Universität Berlin.

    Google Scholar 

  5. Berthold, T. (2008). Heuristics of the branch-cut-and-price-framework SCIP. In J. Kalcsics & S. Nickel (Eds.), Operations research proceedings 2007 (pp. 31–36). New York: Springer.

    Google Scholar 

  6. Berthold, T. (2013). Measuring the impact of the primal heuristics. Operations Research Letters, 41(6), 611–614.

    Google Scholar 

  7. Berthold, T. (2014). RENS: the optimal rounding. Mathematical Programming Computation, 6(1), 33–54.

    Google Scholar 

  8. Berthold, T., & Gleixner, A. M. (2014). Undercover: A primal MINLP heuristic exploring a largest sub-MIP. Mathematical Programming, 144(1–2), 315–346.

    Google Scholar 

  9. Berthold, T., Heinz, S., Pfetsch, M. E., & Vigerske, S. (2011). Large neighborhood search beyond MIP. In L. D. Gaspero, A. Schaerf, & T. Stutzle (Eds.), Proceedings of the 9th Metaheuristics International Conference (MIC 2011) (pp. 51–60).

    Google Scholar 

  10. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., et al. (2008). An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5, 186–204.

    Article  Google Scholar 

  11. Bonami, P., Cornuéjols, G., Lodi, A., & Margot, F. (2009). A feasibility pump for mixed integer nonlinear programs. Mathematical Programming, 119(2), 331–352.

    Article  Google Scholar 

  12. Bonami, P., & Gonçalves, J. (2012). Heuristics for convex mixed integer nonlinear programs. Computational Optimization and Applications, 51, 729–747.

    Article  Google Scholar 

  13. Bussieck, M., Drud, A., & Meeraus, A. (2003). MINLPLib a collection of test models for mixed-integer nonlinear programming. INFORMS Journal on Computing, 15(1), 114–119.

    Google Scholar 

  14. D’Ambrosio, C., Frangioni, A., Liberti, L., & Lodi, A. (2012). A storm of feasibility pumps for nonconvex MINLP. Mathematical Programming, 136, 375–402.

    Google Scholar 

  15. Danna, E., Rothberg, E., & Pape, C. L. (2004). Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, 102(1), 71–90.

    Article  Google Scholar 

  16. Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming, 36(3), 307–339.

    Google Scholar 

  17. Extending a CIP framework to solve MIQCPs. In J. Lee, & S. Leyffer (Eds.), Mixed integer nonlinear programming. Volume 154 of The IMA volumes in mathematics and its applications (pp. 427–444). Springer.

    Google Scholar 

  18. Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming, 98(1–3), 23–47.

    Article  Google Scholar 

  19. Fischetti, M., Glover, F., & Lodi, A. (2005). The feasibility pump. Mathematical Programming, 104(1), 91–104.

    Article  Google Scholar 

  20. Fischetti, M., & Salvagnin, D. (2009). Feasibility pump 2.0. Mathematical Programming Computation, 1, 201–222.

    Article  Google Scholar 

  21. Ghosh, S. (2007). DINS, a MIP improvement heuristic. In M. Fischetti & D. P. Williamson (Eds.), Proceedings of 12th International IPCO Conference on Integer Programming and Combinatorial Optimization (Vol. 4513 of LNCS, pp. 310–323). Springer.

    Google Scholar 

  22. Liberti, L., Mladenovic, N., & Nannicini, G. (2011). A recipe for finding good solutions to MINLPs. Mathematical Programming Computation, 3, 349–390.

    Article  Google Scholar 

  23. Mahajan, A., Leyffer, S., & Kirches, C. (2012). Solving mixed-integer nonlinear programs by QP-diving. Preprint ANL/MCS-2071-0312, Argonne National Laboratory, Mathematics and Computer Science Division.

    Google Scholar 

  24. Nannicini, G., Belotti, P., & Liberti, L. (2008). A local branching heuristic for MINLPs. ArXiv e-prints.

    Google Scholar 

  25. Nannicini, G., & Belotti, P. (2012). Rounding-based heuristics for nonconvex MINLPs. Mathematical Programming Computation, 4(1), 1–31.

    Article  Google Scholar 

  26. Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing, 19(4), 534–541.

    Article  Google Scholar 

  27. Wächter, A., & Biegler, L. (2006). On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.

    Article  Google Scholar 

  28. Wunderling, R. (1996). Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Universität Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Berthold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Berthold, T. (2014). Primal MINLP Heuristics in a Nutshell. In: Huisman, D., Louwerse, I., Wagelmans, A. (eds) Operations Research Proceedings 2013. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-07001-8_4

Download citation

Publish with us

Policies and ethics