Skip to main content

Hydrogen Detection Using a Single Palladium Nano-Aperture on a Fiber Tip

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 56))

Abstract

This chapter discusses the development of fiber optic hydrogen sensors. A motivation for these sensors is given followed by an explanation of the underlying physics of the palladium-hydrogen system. Research results and the strengths and weaknesses of several different fiber optic hydrogen sensor types are discussed. Specifically, the Pd fiber mirror, tapered fiber, Fabry–Pérot interferometer, Fiber Bragg grating, and long period grating sensor architectures are reviewed. Next, a new sensor topology that uses a nano-aperture patterned onto the tip of a Pd coated fiber is presented. The nano-aperture enhances sensitivity because it not only confines light tightly to the Pd surface, but it also creates a Fabry–Pérot resonant structure. Thus, the power shifts in transmission and reflection due to hydrogen induced optical and mechanical changes to the Pd film are amplified. Finally, some conclusions and suggestions for future work are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Wei, X. Lan, H. Xiao, Y. Han, H.-L. Tsai, Optical fiber sensors for high temperature harsh environment sensing. in 2011 IEEE Instrumentation and Measurement Technology Conference (I2MTC) (2011), pp. 1–4

    Google Scholar 

  2. T.N. Veziroğlu, S. Şahin, 21st Century’s energy: hydrogen energy system. Energy Convers. Manage. 49, 1820 (2008)

    Google Scholar 

  3. C. Christofides, A. Mandelis, Solid-state sensors for trace hydrogen gas detection. J. Appl. Phys. 68, R1 (1990)

    Article  ADS  Google Scholar 

  4. Z. Zhao, Y. Sevryugina, M.A. Carpenter, D. Welch, H. Xia, All-optical hydrogen-sensing materials based on tailored palladium alloy thin films. Anal. Chem. 76, 6321 (2004)

    Article  Google Scholar 

  5. G. Choi, G. Jin, S.-H. Park, W. Lee, J. Park, Material and sensing properties of Pd-deposited WO3 thin films. J. Nanosci. Nanotechnol. 7, 3841 (2007)

    Article  Google Scholar 

  6. J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang, Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials. Opt. Express 19, 6141 (2011)

    Article  ADS  Google Scholar 

  7. T.B. Flanagan, W.A. Oates, The palladium-hydrogen system. Annu. Rev. Mater. Sci. 21, 269–304 (1991)

    Article  ADS  Google Scholar 

  8. Y. Morita, K. Nakamura, C. Kim, Langmuir analysis on hydrogen gas response of palladium-gate FET. Sens. Actuators B: Chem. 33, 96 (1996)

    Article  Google Scholar 

  9. J.F. Lynch, T.B. Flanagan, Dynamic equilibrium between chemisorbed and absorbed hydrogen in the palladium/hydrogen system. J. Phys. Chem. 77, 2628 (1973)

    Article  Google Scholar 

  10. D.D. Eley, Molecular hydrogen and metallic surfaces. J. Phys. Chem. 55, 1017 (1951)

    Article  Google Scholar 

  11. E. Wicke, H. Brodowsky, G. Alefeld, J. Völkl, Hydrogen in metals II. Top. Appl. Phys. 29, 73 (1978)

    Article  Google Scholar 

  12. A. Mandelis, J.A. Garcia, Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics. Sens. Actuators B: Chem. 49, 258–267 (1998)

    Article  Google Scholar 

  13. C. Edwards, A. Arbabi, S.J. McKeown, R. Zhou, G. Popescu, L.L. Goddard, Optical Inspection and Metrology Using Diffraction Phase Microscopy. in Surface Analysis Symposium 2013 (Urbana-Champaign, IL, 2013)

    Google Scholar 

  14. C. Edwards, S.J. McKeown, J. Zhou, G. Popescu, L.L. Goddard, Observing hydrogen induced deformations in palladium thin-films. in IEEE Photonics Conference (Bellevue, WA, 2013), pp. 612–613

    Google Scholar 

  15. M. Wang, Y. Feng, Palladium–silver thin film for hydrogen sensing. Sens. Actuators B: Chem. 123, 101–106 (2007)

    Article  Google Scholar 

  16. M. Raval, S. McKeown, A. Arbabi, L.L. Goddard, Palladium Based Fabry–Pérot Etalons for Hydrogen Sensing, in Imaging and Applied Optics Technical Papers, OSA Technical Digest (Optical Society of America, 2012), p. STh2B.5. http://www.opticsinfobase.org/abstract.cfm?uri=Sensors-2012-STh2B.5

  17. B.G. Griffin, A. Arbabi, A.M. Kasten, K.D. Choquette, L.L. Goddard, Hydrogen detection using a functionalized photonic crystal vertical cavity laser. IEEE J. Quantum Electron. 48, 160–168 (2012)

    Article  ADS  Google Scholar 

  18. B.G. Griffin, A. Arbabi, L.L. Goddard, Engineering the sensitivity and response time of edge-emitting laser hydrogen sensors. IEEE Sens. J. 13, 3098–3105 (2013)

    Article  Google Scholar 

  19. B.G. Griffin, A. Arbabi, L.L. Goddard, Functionalized Distributed Feedback Lasers for Hydrogen Sensing Applications. Submitted, (n.d.)

    Google Scholar 

  20. B. Griffin, A. Arbabi, L. Goddard, Coupled Mode Analysis of a Distributed Bragg Reflector Laser for Hydrogen Detection, in Imaging and Applied Optics Technical Papers, OSA Technical Digest (Optical Society of America, 2012), p. STh1B.6. http://www.opticsinfobase.org/abstract.cfm?uri=Sensors-2012-STh1B.6

  21. S.J. McKeown, L.L. Goddard, Hydrogen detection using polarization diversity via a subwavelength fiber aperture. IEEE Photonics J. 4, 1752 (2012)

    Article  Google Scholar 

  22. N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)

    Article  ADS  Google Scholar 

  23. M.A. Butler, Optical fiber hydrogen sensor. Appl. Phys. Lett. 45, 1007–1009 (1984)

    Article  ADS  Google Scholar 

  24. M.A. Butler, Micromirror optical-fiber hydrogen sensor. Sens. Actuators B: Chem. 22, 155 (1994)

    Article  Google Scholar 

  25. E. Maciak, Z. Opilski, Hydrogen gas detection by means of a fiber optic interferometer sensor. J. Phys. IV 137 135–140 (2006) (Proceedings)

    Google Scholar 

  26. K.S. Park, Y.H. Kim, J.B. Eom, S.J. Park, M.-S. Park, J.-H. Jang, B.H. Lee, Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique. Opt. Express 19, 18190 (2011)

    Article  ADS  Google Scholar 

  27. J. Villatoro, D. Luna-Moreno, D. Monzon-Hernandez, Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sens. Actuators B: Chem. 110, 23–27 (2005)

    Article  Google Scholar 

  28. J. Villatoro, A. Diez, J.L. Cruz, M.V. Andres, Highly sensitive optical hydrogen sensor using circular Pdcoated singlemode tapered fibre. Electronics Letters 37, 1011–1012 (2001). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00941800

  29. J. Villatoro, D. Monzón-Hernández, Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt. Express 13, 5087–5092 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-13-5087

  30. K.T. Kim, H.S. Song, J.P. Mah, K.B. Hong, K. Im, S.-J. Baik, Y.-I. Yoon, Hydrogen sensor based on palladium coated side-polished single-mode fiber. IEEE Sens. J. 7, 1767 (2007)

    Article  Google Scholar 

  31. Y.O. Barmenkov, A. Ortigosa-Blanch, A. Diez, J.L. Cruz, M.V. Andrés, Time-domain fiber laser hydrogen sensor. Opt. Lett. 29, 2461 (2004)

    Article  ADS  Google Scholar 

  32. D. Luna-Moreno, D. Monzón-Hernández, J. Villatoro, G. Badenes, Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd–Au thin films. Sens. Actuators B: Chem. 125, 66 (2007)

    Article  Google Scholar 

  33. B. Sutapun, M. Tabib-Azar, A. Kazemi, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens. Actuators B: Chem. 60, 27 (1999)

    Article  Google Scholar 

  34. M. Buric, K.P. Chen, M. Bhattarai, P.R. Swinehart, M. Maklad, Active fiber bragg grating hydrogen sensors for all-temperature operation. IEEE Photonics Technol. Lett. 19, 255 (2007)

    Article  ADS  Google Scholar 

  35. A. Trouillet, E. Marin, C. Veillas, Fibre gratings for hydrogen sensing. Meas. Sci. Technol. 17, 1124 (2006)

    Article  ADS  Google Scholar 

  36. X. Wei, T. Wei, H. Xiao, Y.S. Lin, Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection. Sens. Actuators B: Chem. 134, 687 (2008)

    Article  Google Scholar 

  37. C. Caucheteur, M. Debliquy, D. Lahem, P. Megret, Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air. Opt. Express 16, 16854 (2008)

    Article  ADS  Google Scholar 

  38. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B: Chem. 157, 329 (2011)

    Article  Google Scholar 

  39. S.F. Silva, L. Coelho, O. Frazão, J.L. Santos, F.X. Malcata, A Review of palladium-based fiber-optic sensors for molecular hydrogen detection. IEEE Sens. J. 12, 93–102 (2012)

    Article  Google Scholar 

  40. C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39 (2007)

    Article  ADS  Google Scholar 

  41. H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  43. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496 (2008)

    Article  Google Scholar 

  44. A. Chandran, E.S. Barnard, J.S. White, M.L. Brongersma, Metal-dielectric-metal surface plasmon-polariton resonators. Phys. Rev. B 85, 085416 (2012)

    Article  ADS  Google Scholar 

  45. X. Shi, L. Hesselink, Design of a C aperture to achieve λ/10 resolution and resonant transmission. Josa B 21, 1305–1317 (2004)

    Article  ADS  Google Scholar 

  46. X. Shi, L. Hesselink, R.L. Thornton, Ultrahigh light transmission through a C-shaped nanoaperture. Opt. Lett. 28, 1320–1322 (2003)

    Article  ADS  Google Scholar 

  47. Y. Xie, A. Zakharian, J. Moloney, M. Mansuripur, Transmission of light through slit apertures in metallic films. Opt. Express 12, 6106 (2004)

    Article  ADS  Google Scholar 

  48. G. Veronis, S. Fan, Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511 (2007)

    Article  ADS  Google Scholar 

  49. E.X. Jin, X. Xu, Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film. Jpn. J. Appl. Phys. 43, 407 (2004)

    Article  ADS  Google Scholar 

  50. L. Goddard, S.J. McKeown, Sub-wavelength patterned fiber tips for hydrogen detection. Paper presented at 1st annual world congress of nano science and technology, Dalian, China, 2011

    Google Scholar 

  51. S.J. McKeown, L. Goddard, Nano-aperture fiber hydrogen sensors. Paper presented at nanoelectronic devices for defense and security conference New York, NY, 2011

    Google Scholar 

  52. S.J. McKeown, Fiber optic hydrogen sensing utilizing facet etched palladium nano-apertures. Fiber Optic Hydrogen Sensing Utilizing Facet Etched Palladium Nano-apertures, Thesis, University of Illinois at Urbana-Champaign, 2011

    Google Scholar 

  53. S.J. McKeown, B.G. Griffin, L.L. Goddard, Fiber optic hydrogen sensor utilizing facet-etched metal nano-apertures. in 23rd Annual Meeting of The IEEE Photonics Society, 2010 (Denver, CO, 2010), pp. 730–731

    Google Scholar 

  54. S.L. Chuang, in Physics of Photonic Devices, 2nd edn. (Wiley, New York, 2012)

    Google Scholar 

  55. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998)

    Article  ADS  Google Scholar 

  56. L.L. Goddard, K. Wong, A. Garg, E. Behymer, G. Cole, T. Bond, Measurements of the complex refractive index of Pd and Pt films in air and upon adsorption of H2 gas. Paper presented at IEEE LEOS annual meeting Newport Beach, CA, 2008

    Google Scholar 

  57. P. Tobiška, O. Hugon, A. Trouillet, H. Gagnaire, An integrated optic hydrogen sensor based on SPR on palladium. Sens. Actuators B: Chem. 74, 168–172 (2001)

    Article  Google Scholar 

  58. Y. Fu, N.K.A. Bryan, Investigation of physical properties of quartz after focused ion beam bombardment. Appl. Phys. B 80, 581 (2005)

    Article  ADS  Google Scholar 

  59. R.J. Smith, D.A. Otterson, The effect of hydrogen on the tensile properties of palladium. J Less Common Met. 24, 419 (1971)

    Article  Google Scholar 

  60. S.J. Mckeown, L.L. Goddard, Reflective palladium nanoapertures on fiber for wide dynamic range hydrogen sensing. Submitted, (n.d.)

    Google Scholar 

  61. I.D. Block, L.L. Chan, B.T. Cunningham, Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication. Microelectron. Eng. 84, 603 (2007)

    Article  Google Scholar 

  62. K.H. Hsu, P.L. Schultz, P.M. Ferreira, N.X. Fang, Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett. 7, 446 (2007)

    Article  ADS  Google Scholar 

  63. E.J. Smythe, M.D. Dickey, G.M. Whitesides, F. Capasso, A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 3, 59 (2009)

    Article  Google Scholar 

  64. J.A. Rogers, H.H. Lee (eds.), in Unconventional Nanopatterning Techniques and Applications (Wiley, New York, 2008)

    Google Scholar 

  65. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, R.S. Williams, Hybrid nanoimprint—soft lithography with sub-15 nm resolution. Nano Lett. 9, 2306 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynford L. Goddard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKeown, S.J., Goddard, L.L. (2015). Hydrogen Detection Using a Single Palladium Nano-Aperture on a Fiber Tip. In: Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A. (eds) Lab-on-Fiber Technology. Springer Series in Surface Sciences, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-06998-2_9

Download citation

Publish with us

Policies and ethics