Skip to main content

Overview of Micro- and Nano-Structured Surface Plasmon Resonance Fiber Sensors

  • Chapter
  • First Online:
  • 2898 Accesses

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 56))

Abstract

We overview the micro- and nano-structured optical fiber sensors, directly associated with surface plasmon resonance (SPR) sensing. Fiber sensors combined with SPR technologies offer a new route to improving the sensing capability. Various approaches have been exploited and optimized. For example, D-shape, cladding-off, and tapered fiber structures as well as dielectric or metallic gratings have been introduced. These micro- and nano-structured SPR fiber sensors have received much attention due to their high sensitivity, sensor miniaturization, and the flexibility of optical fibers. Key issues for fiber SPR sensors are low loss and high overlap with sensing medium. These fiber sensors with the use of SPR have been continually studied for chemical and bio-sensing. In this chapter we will review the current status of these micro- and nano-structured optical SPR fiber sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors. Anal. Chem. 78, 3859–3873 (2006)

    Article  Google Scholar 

  2. R. Slavik, J. Homola, J. Ctyroky, Miniaturization of fiber optic surface plasmon resonance sensor. Sens. Actuators B 51, 311–315 (1998)

    Article  Google Scholar 

  3. B. Lee, Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9, 57–79 (2003)

    Article  ADS  Google Scholar 

  4. L.D. Maria, M. Martinelli, G. Vegetti, Fiber-optic sensor based on surface plasmon interrogation. Sens. Actuators B 12, 221–223 (1993)

    Article  Google Scholar 

  5. R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B 12, 213–220 (1993)

    Article  Google Scholar 

  6. J. Homola, R. Slavik, Fibre-optic sensor based on surface plasmon resonance. Electon. Lett. 32, 480–482 (1996)

    Article  Google Scholar 

  7. R. Slavik, J. Homola, J. Ctyroky, Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B 54, 74–79 (1999)

    Article  Google Scholar 

  8. F. Bardin, I. Kasik, A. Trouillet, V. Matejec, H. Gagnaire, M. Chomat, Surface plasmon resonance sensor using an optical fiber with an inverted graded-index profile. Appl. Opt. 41, 2514–2520 (2002)

    Article  ADS  Google Scholar 

  9. D. Monzon-Hernandex, J. Villatoro, D. Talavera, D. Luna-Moreno, Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt. 43, 1216–1220 (2004)

    Article  ADS  Google Scholar 

  10. B. Lee, S. Roh, J. Park, Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 15, 209–221 (2009)

    Article  ADS  Google Scholar 

  11. S. Roh, T. Chung, B. Lee, Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11, 1565–1588 (2011)

    Article  Google Scholar 

  12. A. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7, 1118–1129 (2007)

    Article  Google Scholar 

  13. S.A. Maier, Plasmonics—Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  14. R.K. Verma, A.K. Sharma, B.D. Gupta, Modeling of tapered fiber-optic surface plasmon resonance sensor with enhanced sensitivity. IEEE Photon. Technol. Lett. 19, 1786–1788 (2007)

    Article  ADS  Google Scholar 

  15. R.K. Verma, A.K. Sharma, B.D. Gupta, Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt. Commun. 281, 1486–1491 (2008)

    Article  ADS  Google Scholar 

  16. Y.-C. Kim, W. Peng, S. Banerji, J.-F. Masson, K.S. Booksh, Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)

    Article  ADS  Google Scholar 

  17. R.K. Verma, B.D. Gupta, Theoretical modeling of a bidimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement. J. Phys. D 41, Article ID 095106 (2008)

    Google Scholar 

  18. J. Zeng, D. Liang, Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index. J. Intell. Mater. Syst. Struct. 17, 787–791 (2006)

    Article  ADS  Google Scholar 

  19. Y.-J. Chang, Y.-C. Chen, H.-L. Kuo, P.-K. Wei, Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip. J. Biomed. Opt. 11, 014032-1-014032-5 (2006)

    Google Scholar 

  20. Y. Zhang, C Gu, A.M. Schwartzberg, J.Z. Zhang, Surface-enhanced Raman scattering sensor based on D-shaped fiber. Appl. Phys. Lett. 87, 123105-1-123105-3 (2005)

    Google Scholar 

  21. S.-F. Wang, M.-H. Chiu, J.-C. Hsu, R.-S. Chang, F.-T. Wang, Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film. Opt. Commun. 253, 283–289 (2005)

    Article  ADS  Google Scholar 

  22. C.-H. Chen, T.-C. Tsao, J.-L. Tang, W.-T. Wu, A multi-D-shaped optical fiber for refractive index sensing. Sensors 10, 4794–4804 (2010)

    Article  Google Scholar 

  23. M.-H. Chiu, C.-H. Shih, Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement. Sens. Actuators B 131, 1120–1124 (2008)

    Article  Google Scholar 

  24. M.-H. Chiu, C.-H. Shih, M.-H. Chi, Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens. Actuators B 123, 1120–1124 (2007)

    Article  Google Scholar 

  25. M. Piliarik, J. Homola, Z. Manikova, J. Ctyroky, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B 90, 236–242 (2003)

    Article  Google Scholar 

  26. A. Alvarez-Herrero, H. Guerrero, D. Levy, High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers. IEEE Sens. J. 4, 52–56 (2004)

    Article  Google Scholar 

  27. A.K. Sharma, B.D. Gupta, On the sensitivity and signal-to-noise ratio of a step-index fiber-optic surface-plasmon resonance sensor with bimetallic layers. Opt. Commun. 245, 159–169 (2005)

    Article  ADS  Google Scholar 

  28. S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirsov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2, 62–70 (2002)

    Article  Google Scholar 

  29. T. Zhou, F. Pang, T. Wang, High temperature sensor properties of a specialty double cladding fiber. Proc. SPIE 8311, Opt. Sens. Biophoton. III, 831100 (2011)

    Google Scholar 

  30. J.-L. Tang, S.-F. Cheng, W.-T. Hsu, T.-Y. Chiang, L.-K. Chau, Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators B 119, 105–109 (2006)

    Article  Google Scholar 

  31. Y.-J. He, Y.-L. Lo, J.-F. Huang, Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing. J. Opt. Soc. Am. B 23(5), 801–811 (2006)

    Article  ADS  Google Scholar 

  32. G. Nemova, R. Kashyap, Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating. J. Opt. Soc. Am. B 24, 2696–2701 (2007)

    Article  ADS  Google Scholar 

  33. G. Nemova, R. Kashyap, Fiber-Bragg-grating-assisted surface plasmon polariton sensor. Opt. Lett. 31, 2118–2120 (2006)

    Article  ADS  Google Scholar 

  34. T. Allsop, R. Neal, S. Rehman, D.J. Webb, D. Mapps, I. Bennion, Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings. J. Opt. Soc. Am. B 25, 481–490 (2008)

    Article  ADS  Google Scholar 

  35. S. Roh, H. Kim, B. Lee, Infrared surface plasmon resonance in a subwavelength metallic gratings under illumination at a large incidence angle. J. Opt. Soc. Am. B 28, 1661–1667 (2011)

    Article  ADS  Google Scholar 

  36. W. Ding, S.R. Andrews, T.A. Birks, S.A. Maier, Modal coupling in fiber tapers decorated with metallic surface gratings. Opt. Lett. 31, 2556–2558 (2006)

    Article  ADS  Google Scholar 

  37. A.K. Sharma, B.D. Gupta, Fiber optic sensor based on surface plasmon resonance with nanoparticle films. Photon. Nanotechnol. 17, 124–131 (2006)

    Article  ADS  Google Scholar 

  38. H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. A. Dhawan, M.D. Gerhold, J.F. Muth, Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sens. J. 8, 942–950 (2008)

    Article  Google Scholar 

  40. Y. Lin, Y. Zou, R.G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express 2, 478–484 (2011)

    Article  Google Scholar 

  41. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, A. Cusano, Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6, 3163–3170 (2012)

    Article  Google Scholar 

  42. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 2012, article ID 598178 (2012)

    Google Scholar 

  43. F.M. Cox, A. Argyros, M.C.J. Large, Liquid-filled hollow core microstructured polymer optical fiber. Opt. Express 14, 4135–4140 (2006)

    Article  ADS  Google Scholar 

  44. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, C. Li, A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005-1-015005-4 (2010)

    Google Scholar 

  45. A. Hassani, M. Skorobogatiy, Design criteria for microstrucutred-optical-fiber based surface-plasmon-resonances sensors. J. Opt. Soc. Am. B 24, 1423–1429 (2007)

    Article  ADS  Google Scholar 

  46. M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16, 8427–8432 (2008)

    Article  ADS  Google Scholar 

  47. P.B. Bing, Z.Y. Li, J.Q. Yao, Y. Lu, Z.G. Di, A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core. Mod. Phys. Lett. B 26, 1250082-1-1250082-9 (2012)

    Google Scholar 

  48. M. Kanso, S. Cuenot, G. Louarn, Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics 3, 49–57 (2008)

    Article  Google Scholar 

  49. A.K. Sharma, G.J. Mohr, Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing. New J. Phys. 10, 023039 (2008)

    Article  ADS  Google Scholar 

  50. J. Homola, R. Slavik, J. Ctyroky, Interaction between fiber modes and surface plasmon waves: Spectral properties. Opt. Lett. 22, 1403–1405 (1997)

    Article  ADS  Google Scholar 

  51. R. Slavik, J. Homola, J. Ctyroky, E. Brynda, Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuators B 74, 106–111 (2001)

    Article  Google Scholar 

  52. H. Suzuki, M. Sugimoto, Y. Matsui, J. Kondoh, Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sens. Actuators B 132, 26–33 (2008)

    Article  Google Scholar 

  53. B. Gauvreau, A. Hassani, Majid Fassi Fehri, A. Kabashin, M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express 15, 11413–11426 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MSIP) through the Creative Research Initiatives Program (No. 2007-0054847).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byoungho Lee or Taerin Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, B., Chung, T. (2015). Overview of Micro- and Nano-Structured Surface Plasmon Resonance Fiber Sensors. In: Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A. (eds) Lab-on-Fiber Technology. Springer Series in Surface Sciences, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-06998-2_16

Download citation

Publish with us

Policies and ethics