Skip to main content

Fiber Optic Sensors Based on Nanostructured Materials

  • Chapter
  • First Online:
Lab-on-Fiber Technology

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 56))

  • 2819 Accesses

Abstract

Fiber optic sensors have been developed taking advantage on the synergy between the properties of nanostructured materials and the ones that characterize an optical fiber. The mechanical properties of optical fiber introduce some restrictions to the techniques used for the deposition of materials. As an alternative to the classical deposition procedures, wet coating techniques have been successfully applied in these cases. The current chapter put emphasis on materials that can be incorporated using wet coating techniques. The first one presented is the multilayer based nanostructures: among the different alternatives, we have focused on materials prepared with the Layer-by-Layer technique. Another type of products used for the fabrication of optical fiber sensors is sol-gel matrices, which are made of silica, so that its optical properties are similar to the ones of an optical fiber. The other two described type of products have focused the attention of many researchers in the recent years. Firstly, materials with an enhanced selectivity are presented: the molecularly imprinted polymers (MIPs). Finally, sensors based on metallic nanolayers and particles are presented. All these materials and techniques have acquired a great importance in the field of optical fiber sensors due to their versatility and the good features that offer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Culshaw, Optical fiber sensor technologies: opportunities and – perhaps—pitfalls. J. Lightwave Technol. 22(1), 39–50 (2004)

    Article  ADS  Google Scholar 

  2. G. Decher, M. Eckle, J. Schmitt, B. Struth, Layer-by-layer assembled multicomposite films. Curr. Opin. Colloid Interface Sci. 3(1), 32–39 (1998)

    Article  Google Scholar 

  3. F. Arregui, I. Matias, J. Goicoechea, I. Villar, in Optical Fiber Sensors Based on Nanostructured Coatings, ed. by F.J. Arregui (Springer, US, 2009), pp. 275–301

    Google Scholar 

  4. C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors. Chem. Rev. 108(2), 400–422 (2008)

    Article  Google Scholar 

  5. S.A. Piletsky, A.P.E. Turner, Imprinted polymers and their application in optical sensors, in Optical Biosensors: Today and Tomorrow (Elsevier Science B.V., Amsterdam, 2008)

    Google Scholar 

  6. C. Branger, W. Meouche, A. Margaillan, Recent advances on ion-imprinted polymers. React. Funct. Polym. 73(6), 859–875 (2013)

    Article  Google Scholar 

  7. X. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013)

    Google Scholar 

  8. B.D. Gupta, R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. 2009, 1 (2009)

    Google Scholar 

  9. Y. Chen, H. Ming, Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2(1), 37–49 (2012)

    Article  ADS  Google Scholar 

  10. K. Kudo, Optical fiber bio-sensor using adsorption LB films, IEICE Trans. Electron. E87-C(2), 185–187 (2004)

    Google Scholar 

  11. H. Matsuo, S. Kuniyoshi, K. Kudo, K. Tanaka, Evanescent wave optical fiber sensor using adsorption LB films. Synth. Met. 115(1), 37–39 (2000)

    Article  Google Scholar 

  12. M. Consales, A. Crescitelli, M. Penza, P. Aversa, P.D. Veneri, M. Giordano, A. Cusano, SWCNT nano-composite optical sensors for VOC and gas trace detection. Sens Actuators, B 138(1), 351–361 (2009)

    Article  Google Scholar 

  13. M. Penza, G. Cassano, P. Aversa, A. Cusano, A. Cutolo, M. Giordano, L. Nicolais, Carbon nanotube acoustic and optical sensors for volatile organic compound detection. Nanotechnology 16(11), 2536–2547 (2005)

    Article  ADS  Google Scholar 

  14. S.W. James, I. Ishaq, G.J. Ashwell, R.P. Tatam, Fibre optic sensing using Langmuir Blodgett thin film overlays, in Proceedings of SPIE—The International Society for Optical Engineering (2004), p. 308

    Google Scholar 

  15. R.K. Iler, Multilayers of colloidal particles. J. Colloid Interface Sci. 21(6), 569–594 (1966)

    Article  Google Scholar 

  16. J. Schmitt, T. Gruenewald, G. Decher, P.S. Pershan, K. Kjaer, M. Loesche, Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and X-ray reflectivity study. Macromolecules 26(25), 7058–7063 (1993)

    Article  ADS  Google Scholar 

  17. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    Article  Google Scholar 

  18. P.T. Hammond, T.R. Farhat, Designing a new generation of fuel cells using layer-by-layer deposition of polyelectrolytes, in ACS National Meeting Book of Abstracts (2004)

    Google Scholar 

  19. P.T. Hammond, Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater. 16(15), Spl. Issue, 1271–1293 (2004)

    Google Scholar 

  20. D. Yoo, S.S. Shiratori, M.F. Rubner, Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31(13), 4309–4318 (1998)

    Article  ADS  Google Scholar 

  21. S.S. Shiratori, M.F. Rubner, pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33(11), 4213–4219 (2000)

    Article  ADS  Google Scholar 

  22. J.D. Mendelsohn, C.J. Barrett, V.V. Chan, A.J. Pal, A.M. Mayes, M.F. Rubner, Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 16(11), 5017–5023 (2000)

    Article  Google Scholar 

  23. Y. Lvov, G. Decher, H. Möhwald, Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9(2), 481–486 (1993)

    Article  Google Scholar 

  24. W.B. Stockton, M.F. Rubner, Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30(9), 2717–2725 (1997)

    Article  ADS  Google Scholar 

  25. J. Bravo, L. Zhai, Z. Wu, R.E. Cohen, M.F. Rubner, Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23(13), 7293–7298 (2007)

    Article  Google Scholar 

  26. P. Schuetz, F. Caruso, Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem. Mater. 14(11), 4509–4516 (2002)

    Article  Google Scholar 

  27. Y. Jin, X. Gao, Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 4(9), 571–576 (2009)

    Article  ADS  Google Scholar 

  28. J. Goicoechea, C.R. Zamarreño, I.R. Matías, F.J. Arregui, Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sens. Actuators, B 132(1), 305–311 (2008)

    Article  Google Scholar 

  29. F. Caruso, D. Trau, H. Möhwald, R. Renneberg, Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16(4), 1485–1488 (2000)

    Article  Google Scholar 

  30. J. Hodak, R. Etchenique, E.J. Calvo, K. Singhal, P.N. Bartlett, Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator. Langmuir 13(10), 2708–2716 (1997)

    Article  Google Scholar 

  31. X. Cui, R. Pei, Z. Wang, F. Yang, Y. Ma, S. Dong, X. Yang, Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing. Biosens. Bioelectron. 18(1), 59–67 (2003)

    Article  Google Scholar 

  32. P.J. Yoo, K.T. Nam, J. Qi, S. Lee, J. Park, A.M. Belcher, P.T. Hammond, Spontaneous assembly of viruses on multilayered polymer surfaces. Nat. Mater. 5(3), 234–240 (2006)

    Google Scholar 

  33. I.D. Villar, I.R. Matias, F.J. Arregui, Fiber-optic chemical nanosensors by electrostatic molecular self- assembly. Curr. Anal. Chem., 4(4), 341–355 (2008)

    Google Scholar 

  34. F.J. Arregui, I.R. Matias, Y. Liu, K.M. Lenahan, R.O. Claus, Optical fiber nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process. Opt. Lett. 24(9), 596–598 (1999)

    Article  ADS  Google Scholar 

  35. F.J. Arregui, Y. Liu, I.R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sens. Actuators, B 59(1), 54–59 (1999)

    Article  Google Scholar 

  36. M. Jiang, Q. Li, J. Wang, W. Yao, Z. Jin, Q. Sui, J. Shi, F. Zhang, L. Jia, W. Dong, Optical response of fiber-optic Fabry-Perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films. J. Lightwave Technol. 31(14), 2321–2326 (2013)

    Google Scholar 

  37. M. Jiang, Q. Li, Q. Sui, L. Jia, P. Peng, Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor. Guang Pu Xue Yu Guang Pu Fen Xi/Spectr. Spectral Anal. 33(1), 261–265 (2013)

    Google Scholar 

  38. J.M. Corres, I.R. Matias, M. Hernaez, J. Bravo, F.J. Arregui, Optical fiber humidity sensors using nanostructured coatings of SiO nanoparticles. Sens. J. IEEE 8(3), 281–285 (2008)

    Article  Google Scholar 

  39. J. Goicoechea, C.R. Zamarreño, I.R. Matias, F.J. Arregui, Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities. Sens. Actuators, B 138(2), 613–618 (2009)

    Article  Google Scholar 

  40. C. Elosúa, C. Bariáin, I.R. Matías, F.J. Arregui, A. Luquin, E. Vergara, M. Laguna, Indicator immobilization on Fabry-Perot nanocavities towards development of fiber optic sensors. Sens. Actuators B 130(1), 158–163 (2008)

    Article  Google Scholar 

  41. X. Zhang, Y. Guan, Y. Zhang, Ultrathin hydrogel films for rapid optical biosensing. Biomacromolecules 13(1), 92–97 (2012)

    Article  Google Scholar 

  42. L.H. Chen, X.M. Ang, C.C. Chan, M. Shaillender, B. Neu, W.C. Wong, P. Zu, K.C. Leong, Layer-by-layer (chitosan/polystyrene sulfonate) membrane-based fabry-perot interferometric fiber optic biosensor. IEEE J. Sel. Top. Quantum Electron. 18(4), 1457–1464 (2012)

    Article  Google Scholar 

  43. S.W. James, R.P. Tatam, Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 14(5), R49–R61 (2003)

    Article  ADS  Google Scholar 

  44. I.M. Ishaq, A. Quintela, S.W. James, G.J. Ashwell, J.M. Lopez-Higuera, R.P. Tatam, Modification of the refractive index response of long period gratings using thin film overlays. Sens. Actuators, B 107(2), 738–741 (2005)

    Article  Google Scholar 

  45. S. Korposh, S.W. James, S. Lee, S. Topliss, S.C. Cheung, W.J. Batty, R.P. Tatam, Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles. Opt. Express 18(12), 13227–13238 (2010)

    Google Scholar 

  46. T. Wang, S. Korposh, R. Wong, S. James, R. Tatam, S. Lee, A novel ammonia gas sensor using a nanoassembled polyelectrolyte thin film on fiber-optic long-period gratings. Chem. Lett. 41(10), 1297–1299 (2012)

    Article  Google Scholar 

  47. T. Wang, S. Korposh, S. James, R. Tatam, S. Lee, Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors. Sens. Actuators, B 185, 117–124 (2013)

    Article  Google Scholar 

  48. S.M. Topliss, S.W. James, F. Davis, S.P.J. Higson, R.P. Tatam, Optical fibre long period grating based selective vapour sensing of volatile organic compounds. Sens. Actuators, B 143(2), 629–634 (2010)

    Article  Google Scholar 

  49. S. Korposh, R. Selyanchyn, W. Yasukochi, S. Lee, S.W. James, R.P. Tatam, Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water. Mater. Chem. Phys. 133(2–3), 784–792 (2012)

    Google Scholar 

  50. S. Korposh, S. Lee, S.W. James, R.P. Tatam, Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films. Meas. Sci. Technol. 22(7), 075208 (2011)

    Google Scholar 

  51. D. Viegas, M. Hernaez, J. Goicoechea, J.L. Santos, F.M. Araújo, F. Arregui, I.R. Matias, Simultaneous measurement of humidity and temperature based on an SiO2-nanospheres film deposited on a long-period grating in-line with a fiber Bragg grating. IEEE Sens. J. 11(1), 162–166 (2011)

    Article  Google Scholar 

  52. D. Viegas, J. Goicoechea, J.M. Corres, J.L. Santos, L.A. Ferreira, F.M. Arajo, I.R. Matias, A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres. Meas. Sci. Technol. 20(3), 034002 (2009)

    Google Scholar 

  53. D. Viegas, J. Goicoechea, J.L. Santos, F.M. Araújo, L.A. Ferreira, F.J. Arregui, I.R. Matias, Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating. Sensors 9(1), 519–527 (2009)

    Article  Google Scholar 

  54. J.M. Corres, A. Sanz, F.J. Arregui, I.R. Matías, J. Roca, Fiber optic glucose sensor based on bionanofilms. Sens. Actuators, B 131(2), 633–639 (2008)

    Article  Google Scholar 

  55. I.R. Matias, F.J. Arregui, J.M. Corres, J. Bravo, Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings. IEEE Sens. J. 7(1), 89–95 (2007)

    Article  Google Scholar 

  56. B. Larrió.n, M. Hernáez, F.J. Arregui, J. Goicoechea, J. Bravo, I.R. Matías, Photonic crystal fiber temperature sensor based on quantum dot nanocoatings. J. Sens. 2009, 932471 (2009)

    Google Scholar 

  57. J. Bravo, I.R. Matías, I. Del Villar, J.M. Corres, F.J. Arregui, Nanofilms on hollow core fiber-based structures: an optical study. J. Lightwave Technol. 24(5), 2100–2107 (2006)

    Article  ADS  Google Scholar 

  58. I.R. Matias, J. Bravo, F.J. Arregui, J.M. Corres, Nanofilms on a hollow core fiber. Opt. Eng. 45(5), 050503 (2006)

    Google Scholar 

  59. A.B. Socorro, I.D. Villar, J.M. Corres, F.J. Arregui, I.R. Matias, Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film. IEEE Sens. J. 12(8), 2598–2603 (2012)

    Article  Google Scholar 

  60. A.B. Socorro, J.M. Corres, I. Del Villar, F.J. Arregui, I.R. Matias, Fiber-optic biosensor based on lossy mode resonances. Sens. Actuators, B 174, 263–269 (2012)

    Article  Google Scholar 

  61. M. Hernaez, C.R. Zamarreño, I. del Villar, I.R. Matias, F.J. Arregui, Lossy mode resonances supported by TiO2-coated optical fibers. Procedia Eng., 5, 1099 (2010)

    Google Scholar 

  62. I. Del Villar, C.R. Zamarreño, M. Hernaez, F.J. Arregui, I.R. Matias, Generation of lossy mode resonances with absorbing thin-films. J. Lightwave Technol. 28(23), 3351–3357 (2010)

    ADS  Google Scholar 

  63. I. del Villar, M. Hernaez, C.R. Zamarreno, P. Sánchez, C. Fernández-Valdivielso, F.J. Arregui, I.R. Matias, Design rules for lossy mode resonance based sensors. Appl. Opt. 51(19), 4298–4307 (2012)

    Article  Google Scholar 

  64. H.V.R. Gonçalves, A.J. Duarte, F. Davis, S.P.J. Higson, J.C.G. Esteves da Silva, Layer-by-layer immobilization of carbon dots fluorescent nanomaterials on single optical fiber. Anal. Chim. Acta 735, 90–95 (2012)

    Google Scholar 

  65. C.J. Brinker, Hydrolysis and condensation of silicates: effects on structure. J. Non-Cryst. Solids 100(1–3), 31–50 (1988)

    Article  ADS  Google Scholar 

  66. K. Hwang, J. Kwon, J. Oh, J. An, B. Kim, Surface morphological properties of sol-gel derived SiO2 fiber. J. Mater. Sci. 39(5), 1683–1687 (2004)

    Google Scholar 

  67. C. Brinker, S. Wallace, N. Raman, R. Sehgal, J. Samuel, S. Contakes, Sol-Gel Processing of Amorphous Nanoporous Silicas: Thin Films and Bulk (2002), pp. 123-139

    Google Scholar 

  68. P.J. Davis, R. Deshpande, D.M. Smith, C.J. Brinker, R.A. Assink, Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH. J. Non-Cryst. Solids 167(3), 295–306 (1994)

    Article  ADS  Google Scholar 

  69. S. Liu, L.L. Hench, Control of the texture of gel-silica monoliths by aging treatments, in Proceedings of SPIE—The International Society for Optical Engineering (1992), p. 14

    Google Scholar 

  70. T. Mizuno, H. Nagata, S. Manabe, Attempts to avoid cracks during drying. J. Non-Cryst. Solids 100(1–3), 236–240 (1988)

    Article  ADS  Google Scholar 

  71. J. Estella, J.C. Echeverría, M. Laguna, J.J. Garrido, Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol:TEOS and water:TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. J. Non-Cryst. Solids 353(3), 286–294 (2007)

    Article  ADS  Google Scholar 

  72. J. Estella, J.C. Echeverría, M. Laguna, J.J. Garrido, Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels. J. Porous Mater. 15(6), 705–713 (2008)

    Article  Google Scholar 

  73. J. Estella, J.C. Echeverría, M. Laguna, J.J. Garrido, Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater. 102(1–3), 274–282 (2007)

    Article  Google Scholar 

  74. M. Kruk, M. Jaroniec, R. Ryoo, S.H. Joo, Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 12(5), 1414–1421 (2000)

    Google Scholar 

  75. J.C. Echeverría, P. de Vicente, J. Estella, J.J. Garrido, A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film. Talanta 99, 433–440 (2012)

    Article  Google Scholar 

  76. S. Tao, C.B. Winstead, R. Jindal, J.P. Singh, Optical-fiber sensor using tailored porous sol-gel fiber core. IEEE Sens. J. 4(3), 322–328 (2004)

    Article  Google Scholar 

  77. V. Matejec, J. Mrázek, J. Skokánková, M. Chomát, I. Kašík, Optical properties and sensitivity of xerogel detection layers for fiber-optic hydrocarbon sensors. J. Sol-Gel. Sci. Technol. 32(1–3), 237–242 (2004)

    Article  Google Scholar 

  78. A. Lobnik, N. Majcen, K. Niederreiter, G. Uray, Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymolblue in a sol-gel membrane. Sens. Actuators, B 74(1–3), 200–206 (2001)

    Article  Google Scholar 

  79. W. Cao, Y. Duan, Optical fiber-based evanescent ammonia sensor. Sens. Actuators, B 110(2), 252–259 (2005)

    Article  Google Scholar 

  80. S. Dong, M. Luo, G. Peng, W. Cheng, Broad range pH sensor based on sol-gel entrapped indicators on fibre optic. Sens. Actuators, B 129(1), 94–98 (2008)

    Article  Google Scholar 

  81. J. Estella, P. De Vicente, J.C. Echeverría, J.J. Garrido, A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element. Sens. Actuators, B 149(1), 122–128 (2010)

    Article  Google Scholar 

  82. C. Chu, Y. Lo, T. Sung, Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 1(3), 234–250 (2011)

    Google Scholar 

  83. C. Chu, T. Sung, Y. Lo, Enhanced optical oxygen sensing property based on Pt(II) complex and metal-coated silica nanoparticles embedded in sol-gel matrix. Sens. Actuators, B 185, 287–292 (2013)

    Google Scholar 

  84. M. Bezunartea, J. Estella, J.C. Echeverría, C. Elosúa, C. Bariáin, M. Laguna, A. Luquin, J.J. Garrido, Optical fibre sensing element based on xerogel-supported [Au2Ag2(C6F5)4(C14H10)]n for the detection of methanol and ethanol in the vapour phase. Sens. Actuators, B 134(2), 966–973 (2008)

    Article  Google Scholar 

  85. J. Musgo, J.C. Echeverría, J. Estella, M. Laguna, J.J. Garrido, Ammonia-catalyzed silica xerogels: Simultaneous effects of pH, synthesis temperature, and ethanol:TEOS and water:TEOS molar ratios on textural and structural properties. Microporous Mesoporous Mater. 118(1–3), 280–287 (2009)

    Article  Google Scholar 

  86. A.P.F. Turner, Biosensors. Curr. Opin. Biotechnol. 5(1), 49–53 (1994)

    Article  ADS  Google Scholar 

  87. G. Wulff, R. Grobe-Einsler, R. Vesper, A. Sarhan, On the specificity distribution of chiral cavities prepared in synthetic polymers. Die Makromolekulare Chemie 178, 2817 (1977)

    Article  Google Scholar 

  88. T.A. Sergeyeva, Molecularly imprinted polymers as synthetic mimics of bioreceptors. 1. General principles of molecular imprinting. Biopolymers Cell 25(4), 253–265 (2009)

    Article  Google Scholar 

  89. S.A. Piletsky, E.V. Piletskaya, T.L. Panasyuk, A.V. El’skaya, R. Levi, I. Karube, G. Wulff, Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes. Macromolecules 31(7), 2137–2140 (1998)

    Article  ADS  Google Scholar 

  90. N. Wu, L. Feng, Y. Tan, J. Hu, An optical reflected device using a molecularly imprinted polymer film sensor. Anal. Chim. Acta 653(1), 103–108 (2009)

    Article  Google Scholar 

  91. R.B. Queirós, S.O. Silva, J.P. Noronha, O. Frazão, P. Jorge, G. Aguilar, P.V.S. Marques, M.G.F. Sales, Microcystin-LR detection in water by the Fabry-Pérot interferometer using an optical fibre coated with a sol-gel imprinted sensing membrane. Biosens. Bioelectron. 26(9), 3932–3937 (2011)

    Article  Google Scholar 

  92. Y. Chen, J.J. Brazier, M. Yan, P.R. Bargo, S.A. Prahl, Fluorescence-based optical sensor design for molecularly imprinted polymers. Sens. Actuators, B 102(1), 107–116 (2004)

    Google Scholar 

  93. S.M. Ng, R. Narayanaswamy, Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media. Anal. Bioanal. Chem. 386(5), 1235–1244 (2006)

    Article  Google Scholar 

  94. X. Ton, B. Tse Sum Bui, M. Resmini, P. Bonomi, I. Dika, O. Soppera, K. Haupt, A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ. Angew. Chem. Int. Ed. 52(32), 8317–8321 (2013)

    Google Scholar 

  95. T.H. Nguyen, S.A. Hardwick, T. Sun, K.T.V. Grattan, Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element. IEEE Sens. J. 12(1), 255–260 (2012)

    Article  Google Scholar 

  96. S. Piperno, B. Tse Sum Bui, K. Haupt, L.A. Gheber, Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly(vinyl alcohol) nanofibers. Langmuir 27(5), 1547–1550 (2011)

    Google Scholar 

  97. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4(C), 299–304 (1983)

    Google Scholar 

  98. J. Homola, Electromagnetic theory of surface plasmons, in Springer Series on Chemical Sensors and Biosensors, vol. 4 (2006), pp. 3–44

    Google Scholar 

  99. G. Dougherty, Compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance. Meas. Sci. Technol. 4(6), 697–699 (1993)

    Article  ADS  Google Scholar 

  100. S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, W. Knoll, Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics. Sens. Actuators, B 105(2), 532–541 (2005)

    Article  Google Scholar 

  101. E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 143(2), 513–526 (1991)

    Article  Google Scholar 

  102. R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B 12(3), 213–220 (1993)

    Article  Google Scholar 

  103. B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)

    Article  ADS  Google Scholar 

  104. A. Cusano, J.M. López-Higuera, I.R. Matias, B. Culshaw, Editorial optical fiber sensor technology and applications. IEEE Sens. J. 8(7), 1052–1054 (2008)

    Article  Google Scholar 

  105. B. Lee, Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9(2), 57–79 (2003)

    Article  ADS  Google Scholar 

  106. B. Lee, S. Roh, J. Park, Current status of micro- and nano-structured optical fiber sensors. Optical Fiber Technology 15(3), 209–221 (2009)

    Article  ADS  Google Scholar 

  107. S. Roh, T. Chung, B. Lee, Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11(2), 1565–1588 (2011)

    Article  Google Scholar 

  108. S. Singh, S.K. Mishra, B.D. Gupta, SPR based fibre optic biosensor for phenolic compounds using immobilization of tyrosinase in polyacrylamide gel. Sens. Actuators, B 186, 388–395 (2013)

    Article  Google Scholar 

  109. R. Slavík, J. Homola, J. Ctyroký, Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators, B 54(1), 74–79 (1999)

    Article  Google Scholar 

  110. T. Allsop, R. Neal, C. Mou, P. Brown, S. Rehman, K. Kalli, D.J. Webb, D. Mapps, I. Bennion, Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing. Opt. Fiber Technol. 15(5–6), 477–482 (2009)

    Article  ADS  Google Scholar 

  111. T.D.P. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D.J. Webb, P.F. Culverhouse, J.L. Sullivan, I. Bennion, Formation and characterization of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fiber. IEEE J. Quantum Electron. 48(3), 394–405 (2012)

    Article  ADS  Google Scholar 

  112. X. Yu, S. Zhang, Y. Zhang, H. Ho, P. Shum, H. Liu, D. Liu, An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis. Opt. Express, 18(17), 17950–17957 (2010)

    Google Scholar 

  113. J. Albert, L. Shao, C. Caucheteur, Tilted fiber Bragg grating sensors. Laser Photonics Rev. 7(1), 83–108 (2013)

    Google Scholar 

  114. T. Schuster, R. Herschel, N. Neumann, C.G. Schäffer, Miniaturized long-period fiber grating assisted surface plasmon resonance sensor. J. Lightwave Technol. 30(8), 1003–1008 (2012)

    Article  ADS  Google Scholar 

  115. S. Cheng, L. Chau, Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal. Chem. 75(1), 16–21 (2003)

    Google Scholar 

  116. H.S. Jang, K.N. Park, C.D. Kang, J.P. Kim, S.J. Sim, K.S. Lee, Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen. Opt. Commun. 282(14), 2827–2830 (2009)

    Article  ADS  Google Scholar 

  117. N. Lai, C. Wang, H. Chiang, L. Chau, Detection of antinuclear antibodies by a colloidal gold modified optical fiber: comparison with ELISA. Anal. Bioanal. Chem. 388(4), 901–907 (2007)

    Google Scholar 

  118. Lin, T.-. & Chung, M.-. 2008, “Using monoclonal antibody to determine lead ions with a localized surface plasmon resonance fiber-optic biosensor”, Sensors, vol. 8, no. 1, pp. 582-593

    Google Scholar 

  119. M. Piliarik, J. Homola, Z. Maníková, J. Ctyroký, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators, B 90(1–3), 236–242 (2003)

    Article  Google Scholar 

  120. V.V.R. Sai, T. Kundu, S. Mukherji, Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens. Bioelectron. 24(9), 2804–2809 (2009)

    Article  Google Scholar 

  121. R. Slavík, J. Homola, E. Brynda, A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens. Bioelectron. 17(6–7), 591–595 (2002)

    Article  Google Scholar 

  122. J. Tang, S. Cheng, W. Hsu, T. Chiang, L. Chau, Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators, B 119(1), 105–109 (2006)

    Google Scholar 

  123. Y. Yanase, A. Araki, H. Suzuki, T. Tsutsui, T. Kimura, K. Okamoto, T. Nakatani, T. Hiragun, M. Hide, Development of an optical fiber SPR sensor for living cell activation. Biosens. Bioelectron. 25(5), 1244–1247 (2010)

    Article  Google Scholar 

  124. A. Baliyan, P. Bhatia, B.D. Gupta, E.K. Sharma, A. Kumari, R. Gupta, Surface plasmon resonance based fiber optic sensor for the detection of triacylglycerides using gel entrapment technique. Sens. Actuators, B 188, 917–922 (2013)

    Article  Google Scholar 

  125. J. Cao, M.H. Tu, T. Sun, K.T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens. Actuators, B 181, 611–619 (2013)

    Article  Google Scholar 

  126. L. Chau, Y. Lin, S. Cheng, T. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuators, B 113(1), 100–105 (2006)

    Google Scholar 

  127. T. Lin, M. Chung, Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosens. Bioelectron. 24(5), 1213–1218 (2009)

    Google Scholar 

  128. K. Mitsui, Y. Handa, K. Kajikawa, Optical fiber affinity biosensor based on localized surface plasmon resonance. Appl. Phys. Lett. 85(18), 4231–4233 (2004)

    Article  ADS  Google Scholar 

  129. P.J. Rivero, A. Urrutia, J. Goicoechea, F.J. Arregui, Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sens. Actuators, B 173, 244–249 (2012)

    Article  Google Scholar 

  130. J. Cao, M.H. Tu, T. Sun, K.T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens. Actuators B 181, 611–619 (2013)

    Article  Google Scholar 

  131. J. Cao, E.K. Galbraith, T. Sun, K.T.V. Grattan, Cross-comparison of surface plasmon resonance-based optical fiber sensors with different coating structures. IEEE Sens. J. 12(7), 2355–2361 (2012)

    Article  Google Scholar 

  132. E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta 706(1), 8–24 (2011)

    Article  Google Scholar 

  133. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, L.M. Liz-Marzán, LSPR-based nanobiosensors. Nano Today 4(3), 244–251 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Elosua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elosua, C., Hernaez, M., Matias, I.R., Arregui, F.J. (2015). Fiber Optic Sensors Based on Nanostructured Materials. In: Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A. (eds) Lab-on-Fiber Technology. Springer Series in Surface Sciences, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-06998-2_13

Download citation

Publish with us

Policies and ethics