Skip to main content

Lab on Fiber by Using the Breath Figure Technique

  • Chapter
  • First Online:
Lab-on-Fiber Technology

Abstract

In this chapter, we report on a novel fabrication process developed to realize metal-dielectric crystals onto optical fibers by a self-assembly technique. Breath figures methodology is selected as a technological tool to operate directly onto non-conventional substrates like optical fibers. Regular and ordered metallo-dielectric crystals are easily integrated onto the optical fiber tip, providing the basis for the rapid and cost effective prototyping of photonic-plasmonic nanoprobes for advanced sensing applications. In order to validate the proposed fabrication route, we develop a first technological platform capable of supporting interferometric effects assisted by surface plasmon excitation at the metallo-dielectric interface. We investigated the sensing properties of the realized optical fiber probes, the results of which revealed an exceptional sensitivity with respect to the refractive index, as high as 2300 nm/RIU, enabling the employment of the optical fiber platform to be used as optical nano-probe for label-free chemical and biological sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.C. Kao, G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies. Proc. IEE 113(3), 191–198 (1966)

    Google Scholar 

  2. A. Cusano, M. Consales, M. Pisco, A. Crescitelli, A. Ricciardi, E. Esposito, A. Cutolo, Lab on fiber technology and related devices, part I: a new technological scenario; Lab on fiber technology and related devices, part II: the impact of the nanotechnologies. Proc. SPIE 8001, 800122 (2011)

    Article  Google Scholar 

  3. B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)

    Article  ADS  Google Scholar 

  4. A. Cusano, A. Cutolo, J. Albert, (eds.), Fiber Bragg Grating Sensors : Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, Oak Park, 2011), pp. 197–217

    Google Scholar 

  5. A. Cusano, M. Giordano, A. Cutolo, M. Pisco, M. Consales, Integrated development of chemoptical fiber nanosensors. Curr. Anal. Chem., Bentham Sci. Publ. 4(4), 296–315 (2008)

    Article  Google Scholar 

  6. P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  7. J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  8. A. Cusano, D. Paladino, A. Iadicicco, Microstructured fiber bragg gratings. J. of Lightwave Technol. 27(11), 1663–1697, ISSN: 0733-8724 (2009)

    Google Scholar 

  9. A. Iadicicco, S. Campopiano, A. Cusano, Long period gratings in hollow core fibers by pressure assisted arc discharge technique. Photonics Technol. Lett. 23(21), 1567–1569 (2011)

    Article  ADS  Google Scholar 

  10. D. Psaltis, S.R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

    Article  ADS  Google Scholar 

  11. J. Canning, M. Stevenson, T.K. Yip, S.K. Lim, C. Martelli, White light sources based on multiple precision selective micro-filling of structured optical waveguides. Opt. Express 16(20), 15700–15708 (2008)

    Article  ADS  Google Scholar 

  12. M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, A. Cusano, Structured chirped fiber bragg gratings. J. Lightwave Technol. 26(12) 1613–1625 (15 June 2008)

    Google Scholar 

  13. F. Poli, A. Cucinotta, S. Selleri, Photonic crystal fibers, properties and applications (Material Science Springer-Verlag, Dordrecht, 2007)

    Google Scholar 

  14. G. Brambilla, Optical fibre nanowires and microwires: a review. J. Opt. 12(4), 043001 (2010)

    Article  ADS  Google Scholar 

  15. M. Consales, M. Pisco, A. Cusano, Lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sens. 2(4), 289–314 (2012)

    Article  ADS  Google Scholar 

  16. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, A. Cusano, Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6(4), 3163–3170 (2012)

    Article  Google Scholar 

  17. A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)

    Google Scholar 

  18. M. Bayindir, F. Sorin, S. Hart, O. Shapira, J.D. Joannopoulos, Y. Fink, Metal–insulator–semiconductor optoelectronic fibres. Nature 431, 826–829 (2004)

    Article  ADS  Google Scholar 

  19. Alexander Gumennik, Alexander M. Stolyarov, Brent R. Schell, Chong Hou, Guillaume Lestoquoy, Fabien Sorin, William McDaniel, Aimee Rose, John D. Joannopoulos, Yoel Fink, All-in-fiber chemical sensing. Adv. Mater. 24(45), 6005–6009 (2012)

    Article  Google Scholar 

  20. S. Egusa, Z. Wang, N. Chocat, Z.M. Ruff, A.M. Stolyarov, D. Shemuly, F. Sorin, P.T. Rakich, J.D. Joannopoulos, Y. Fink, Multimaterial piezoelectric fibres. Nat. Mater. 9(8), 643–648 (2010)

    Article  ADS  Google Scholar 

  21. S. Fan, J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)

    Article  ADS  Google Scholar 

  22. A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, A. Cusano, Guided resonances in photonic quasicrystals. Opt. Express 17(8), 6335–6346 (2009)

    Google Scholar 

  23. M. Pisco, A. Ricciardi, I. Gallina, G. Castaldi, S. Campopiano, A. Cutolo, A. Cusano, V. Galdi, Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: a comparative study. Opt. Express 18(16), 17280–17293 (2010)

    Article  ADS  Google Scholar 

  24. E.J. Smythe, M.D. Dickey, G.M. Whitesides, F.A. Capasso, A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 3, 59–65 (2009)

    Article  Google Scholar 

  25. E.J. Smythe, M.D. Dickey, J. Bao, G.M. Whitesides, F. Capasso, Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett. 9(3), 1132–1138 (2009)

    Article  ADS  Google Scholar 

  26. D.J. Lipomi, R.V. Martinez, M.A. Kats, S.H. Kang, P. Kim, J. Aizenberg, F. Capasso, G.M. Whitesides, Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Lett. 11(2), 632–636 (2011)

    Article  ADS  Google Scholar 

  27. W. Jung, B. Park, J. Provine, R.T. Howe, O. Solgaard, Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J. Lightwave Technol. 29, 1367–1374 (2011)

    Google Scholar 

  28. G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, J. Vuckovic, Optical fiber tips functionalized with semiconductor photonic crystal cavities. Appl. Phys. Lett. 99, 191102 (2011)

    Article  ADS  Google Scholar 

  29. S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. Van Thourhout, R. Baets, Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment. J. Lightwave Technol. 27(10), 1415–1420 (2009)

    Article  ADS  Google Scholar 

  30. A. Dhawan, M.D. Gerhold, J.F. Muth, Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. Sens. J. IEEE 8(6), 942–950 (2008)

    Article  Google Scholar 

  31. Y. Lin, Y. Zou, R.G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express 2, 478–484 (2011)

    Article  Google Scholar 

  32. M. Pisco, G. Quero, A. Iadicicco, M. Giordano, F. Galeotti, A. Cusano, Lab on fiber using self-assembly technique: a preliminary study. Proceedings of SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 842188, 2012

    Google Scholar 

  33. M. Pisco, G. Quero, A. Iadicicco, M. Giordano, F. Galeotti, A. Cusano, Lab on fiber by using the breath figure technique. Proceedings of SPIE 8774, 87740R, Optical Sensors 2013

    Google Scholar 

  34. M. Pisco, G. Quero, A. Iadicicco, M. Giordano, F. Galeotti, A. Cusano, Ultrasensitive nanoprobes based on metallo-dielectric crystals integrated onto optical fiber tips using the breath figures technique. Proceedings of the SPIE, Vol 8794, 87942P, Fifth European Workshop on Optical Fibre Sensors, 2013

    Google Scholar 

  35. George M. Whitesides, Bartosz Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Article  ADS  Google Scholar 

  36. J.F. Galisteo-López, M. Ibisate, R. Sapienza, L.S. Froufe-Pérez, Á. Blanco, C. López, Self-assembled photonic structures. Adv. Mater. 23(1), 30–69 (2011)

    Article  Google Scholar 

  37. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001)

    Article  ADS  Google Scholar 

  38. A. Bolognesi, C. Mercogliano, S. Yunus, M. Civardi, D. Comoretto, A. Turturro, Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography. Langmuir 21(8), 3480–3485 (2005)

    Article  Google Scholar 

  39. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film. Science 292(5514), 79–83 (2001)

    Article  ADS  Google Scholar 

  40. M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Polym. Chem. 44, 2363 (2006)

    Article  Google Scholar 

  41. M. Haupt, S. Miller, R. Sauer, K. Thonke, A. Mourran, M. Moeller, Breath figures: self-organizing masks for the fabrication of photonic crystals and dichroic filters. J. Appl. Phys. 96, 3065 (2004)

    Article  ADS  Google Scholar 

  42. P. Escalé, L. Rubatat, L. Billon, M. Save, Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polymer J. 48(6), 1001–1025 (2012)

    Article  Google Scholar 

  43. M. Hernández-Guerrero, M.H. Stenzel, Honeycomb structured polymer films via breath figures. Polym. Chem. 3, 563–577 (2012)

    Article  Google Scholar 

  44. F. Galeotti, V. Calabrese, M. Cavazzini, S. Quici, C. Poleunis, S. Yunus, A. Bolognesi, Self-functionalizing polymer film surfaces assisted by specific polystyrene end-tagging. Chem. Mater. 22, 2764–2769 (2010)

    Article  Google Scholar 

  45. A. Ricciardi, M. Pisco, I. Gallina, S. Campopiano, V. Galdi, L. O’ Faolain, T.F. Krauss, A. Cusano, Experimental evidence of guided-resonances in photonic crystals with aperiodically ordered supercells. Opt. Lett. 35, 3946–3948 (2010) http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-23-3946

  46. A. Ricciardi, M. Pisco, A. Cutolo, A. Cusano, L.O’ Faolain, T.F. Krauss, G. Castaldi, V. Galdi, Evidence of guided resonances in photonic quasicrystal slabs. Phys. Rev. B 84, 085135 (2011)

    Google Scholar 

  47. J.N. Anker, W.P. Hall, O. Lyandres, N.C Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cusano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pisco, M., Quero, G., Iadicicco, A., Giordano, M., Galeotti, F., Cusano, A. (2015). Lab on Fiber by Using the Breath Figure Technique. In: Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A. (eds) Lab-on-Fiber Technology. Springer Series in Surface Sciences, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-06998-2_11

Download citation

Publish with us

Policies and ethics