Skip to main content

Failure Mode Transition in Fiber Composite Fatigue

  • Conference paper
  • First Online:
Fracture, Fatigue, Failure, and Damage Evolution, Volume 5

Abstract

Previous work has shown that, under some circumstances, failure of polymer-matrix fiber composites under bending fatigue loading can transition from compressive/local buckling failure to tensile/fiber fracture failure. For low cycle fatigue, failure tends to be compressive in nature and can be modeled based on kink band theory. For high cycle fatigue, failure tends to be tensile and can be modeled based on a fatigue damage/wear-out model. In this work, we investigate the effect of load ratio on the transition from low cycle/compressive failure to high cycle/tensile failure for a unidirectional polyester/glass fiber composite. The stiffness degradation of the beams under changing loading conditions is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makeev A, Nikishkov Y (2011) Fatigue life assessment for composite structure. In: Proceedings of the 26th ICAF symposium (June 1–3), Montreal

    Google Scholar 

  2. Momenkhani K, Sarkani S (2006) A new method for predicting the fatigue life of fiber-reinforced plastic laminates. J Compos Mater 40(21):1971–1982

    Article  Google Scholar 

  3. Labeas GN et al (2012) Adaptive progressive damage modeling for large-scale composite structures. Int J Damage Mech 21:441–462

    Article  Google Scholar 

  4. Varvani-Farahani A et al (2006) A fatigue damage parameter for life assessment of off-axis unidirectional GRP composites. J Compos Mater 40(18):1659–1670

    Article  Google Scholar 

  5. Van der Meer FP, Sluys LJ (2009) Continuum models for the analysis of progressive failure in composite laminates. J Compos Mater 43(20):2131–2156

    Article  Google Scholar 

  6. Riccio A (2005) Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load: part II – numerical studies. J Compos Mater 39(23):2091–2112

    Article  Google Scholar 

  7. Subramanian S et al (1995) A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase. Int J Fatigue 17(5):434–351

    Article  Google Scholar 

  8. Wu F, Yao W (2010) A fatigue damage model of composite materials. Int J Fatigue 32:134–138

    Article  Google Scholar 

  9. Mao H, Mahadevan S (2002) Fatigue damage modeling of composite materials. Compos Struct 58:405–410

    Article  Google Scholar 

  10. Shi W et al (2011) A damage mechanics model for fatigue life prediction of fiber reinforced polymer composite lamina. Acta Mechanica Solida Sinica 24(5):399–410

    Article  Google Scholar 

  11. Owen MJ, Howe RJ (1972) The accumulation of damage in a glass-reinforced plastic under tensile and fatigue loading. J Phys D Appl Phys 5:1637–1653

    Article  Google Scholar 

  12. Kawai M, Suda H (2004) Effects of non-negative mean stress on the off-axis fatigue behavior of unidirectional carbon/epoxy composites at room temperature. J Compos Mater 38(10):833–854

    Article  Google Scholar 

  13. Davila CG et al (2005) Failure criteria for FRP laminates. J Compos Mater 39(4):323–345

    Article  MathSciNet  Google Scholar 

  14. Yeh H-Y et al (2008) An investigation of failure criterion for new orthotropic ceramic matrix composite materials. J Reinforc Plast Compos 28(4):441–459

    Article  Google Scholar 

  15. Hanus E, Ericsson T (1995) Influence of four-point bending fatigue on the residual stress state of a pressure-rolled, particulate-reinforced metal matrix composite. Mater Sci Eng A 194:147–156

    Article  Google Scholar 

  16. Epaarachchi JA, Clausen PD (2003) An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. Composites A 34:313–326

    Article  Google Scholar 

  17. Momenkhani K, Sarkani S (2005) Development and application of a model using center of gravity hysteresis loops to predict fatigue damage accumulation in fiber-reinforced plastic laminates. J Compos Mater 39(6):557–575

    Article  Google Scholar 

  18. Dowling NE (2004) Mean stress effects in stress-life and strain-life fatigue. SAE Technical Paper 2004-01-2227

    Google Scholar 

  19. Budianski B, Fleck NA (1993) Compressive failure of fibre composites. J Mech Phys Solid 41(1):183–211

    Article  Google Scholar 

  20. Slaughter WS, Fleck NA (1993) Compressive fatigue of fibre composites. J Mech Phys Solid 41(8):1265–1284

    Article  MATH  Google Scholar 

  21. Diao X et al (1995) A statistical model of residual strength and fatigue life of composite laminates. Compos Sci Technol 54:329–336

    Article  Google Scholar 

  22. Chawla T (2013) Mechanical characterization of composite repairs for fiber-glass wind turbine blades. Ph.D. Thesis, University of North Dakota

    Google Scholar 

  23. ASTM D6272–10 (2010) Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four-point bending. ASTM, West Conshohocken, PA

    Google Scholar 

  24. Sendeckyj GP (1981) Fitting models to composite material fatigue data. In: Test methods and design allowables for fibrous composites

    Google Scholar 

  25. Slaughter WS, Fleck NA (1993) Compressive fatigue failure of fiber composites. Cambridge University, Engineering Department, Cambridge, UK

    Google Scholar 

  26. ImageJ: Image processing and analysis in Java. National Institutes of Health. Accessed from http://imagej.nih.gov/ij/ on 3/8/14

  27. Reimbayev M (2012) Fatigue behavior of continuous fiber-reinforced composite beams. M.S. Thesis. University of North Dakota

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Cavalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Rasheduzzaman, M., Cavalli, M.N. (2015). Failure Mode Transition in Fiber Composite Fatigue. In: Carroll, J., Daly, S. (eds) Fracture, Fatigue, Failure, and Damage Evolution, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06977-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06977-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06976-0

  • Online ISBN: 978-3-319-06977-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics