Skip to main content

Formal Model of 3D Protein Structures for Functional Genomics, Comparative Bioinformatics, and Molecular Modeling

  • Chapter
  • First Online:
High-Performance Computational Solutions in Protein Bioinformatics

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1007 Accesses

Abstract

This chapter shows how proteins can be represented in processes performed in scientific fields, such as functional genomics, comparative bioinformatics, and molecular modeling. The chapter begins with the general definition of protein spatial structure, which can be treated as a base for deriving other forms of representation. The general definition is then referenced to four representation levels of protein structure: primary, secondary, tertiary, and quaternary structure. This is followed by short description of protein geometry. And finally, at the end of the chapter, we will discuss energy features that can be calculated based on the general description of protein structure. The formal model defined in the chapter will be used in the description of algorithms presented in the following chapters of the book.

Proteins are where the action is. Arthur M. Lesk, 2010

The great promise of structural bioinformatics is predicted on the belief that the availability of high-resolution structural information about biological systems will allow us to precisely reason about the function of these systems and the effects of modifications or perturbations.

Jenny Gu, Philip E. Bourne, 2009

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  2. Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2), 195–201 (2009)

    Article  Google Scholar 

  3. Berardi, M., Bushweller, J.: Binding specificity and mechanistic insight into glutaredoxin-catalyzed protein disulfide reduction. J. Mol. Biol. 292, 151–161 (1999)

    Article  Google Scholar 

  4. Berman, H., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    Google Scholar 

  5. Branden, C., Tooze, J.: Introduction to Protein Structure, 2nd edn. Garland Science, New York (1999)

    Google Scholar 

  6. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4(2), 187–217 (1983)

    Google Scholar 

  7. Brown, N., Noble, M., Lawrie, A., Morris, M., et al.: Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 274, 8746–8756 (1999)

    Article  Google Scholar 

  8. Burkowski. F.: Structural Bioinformatics: An Algorithmic Approach, 1st edn. Chapman and Hall/CRC, Boca Raton (2008)

    Google Scholar 

  9. Can, T., Wang, Y.: CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features. In: Proceedings of the 2003 IEEE Bioinformatics Conference (CSB 2003), pp. 169–179 (2003)

    Google Scholar 

  10. Chen, P.Y., Lin, K.C., Lin, J.P., et al.: Phenethyl isothiocyanate (PEITC) inhibits the growth of human oral squamous carcinoma HSC-3 cells through G0/G1 phase arrest and mitochondria-mediated apoptotic cell death. Evidence-Based Complementary and Alternative Medicine, vol. 2012. Article ID 718320, pp. 1–12 (2012)

    Google Scholar 

  11. Chime and Jmol Homepage: Molecular Visualization Resources. http://www.umass.edu/microbio/chime/

  12. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Google Scholar 

  13. Eswar, N., Marti-Renom, M.A., Webb, B., Madhusudhan, M.S., Eramian, D., Shen, M., Pieper, U., Sali, A.: Comparative Protein Structure Modeling with MODELLER. Current Protocols in Bioinformatics, Supplement 15, pp. 5.6.1–5.6.30. John Wiley & Sons Inc, New York (2006)

    Google Scholar 

  14. Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R.: The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J. Mol. Biol. 175, 159–174 (1984)

    Article  Google Scholar 

  15. Frishman, D., Argos, P.: 75% accuracy in protein secondary structure prediction. Proteins 27, 329–335 (1997)

    Article  Google Scholar 

  16. Gans, J., Shalloway, D.: Qmol: a program for molecular visualization on windows-based PCs. J. Mol. Graph Model 19(6), 557–559 (2001)

    Article  Google Scholar 

  17. Garnier, J., Gibrat, J.F., Robson, B.: GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 266, 540–553 (1996)

    Article  Google Scholar 

  18. Hammel, L., Patel, J.M.: Searching on the secondary structure of protein sequences. In: Proceedings of the 28th International Conference on Very Large Data Bases. Hong Kong, China, pp. 634–645 (2002)

    Google Scholar 

  19. Harrington, D., Adachi, K., Royer Jr, W.: The high resolution crystal structure of deoxyhemoglobin S. J. Mol. Biol. 272, 398–407 (1997)

    Article  Google Scholar 

  20. Heinke, F., Schildbach, S., Stockmann, D., Labudde, D.: eProSa database and toolbox for investigating protein sequence-structure-function relationships through energy profiles. Nucleic Acids Res. 41(D1), D320–D326 (2013)

    Google Scholar 

  21. Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A.: Searching protein structure databases with DaliLite v. 3. Bioinformatics 24, 2780–2781 (2008)

    Article  Google Scholar 

  22. Hong, H.J., Chen, P.Y., Shih, T.C., Ou, C.Y., Jhuo, M.D., Huang, Y.Y., Cheng, C.H., Wu, Y.C., Chung, J.G.: Computational pharmaceutical analysis of anti-Alzheimer’s Chinese medicine Coptidis Rhizoma alkaloids. Mol. Med. Rep. 5(1), 142–147 (2012)

    Google Scholar 

  23. Jmol Homepage: Jmol: an Open-Source Java Viewer for Chemical Structures in 3D. http://www.jmol.org

  24. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J.: Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012)

    Article  Google Scholar 

  25. Kelley, L.A., Sternberg, M.J.E.: Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4(3):363–371 (2009)

    Google Scholar 

  26. Kim, D.E., Chivian, D., Baker, D.: Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32(Suppl 2), W526–W531 (2004)

    Article  Google Scholar 

  27. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  Google Scholar 

  28. Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Pearson Education EMA, London (2001)

    Google Scholar 

  29. Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., et al.: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011)

    Article  Google Scholar 

  30. Małysiak, B., Momot, A., Kozielski, S., Mrozek, D.: On using energy signatures in protein structure similarity searching. In: Rutkowski, L., et al. (eds.) AISC 2008, Lecture Notes Computer Science, vol. 5097, pp. 939–950. Springer, Heidelberg (2008)

    Google Scholar 

  31. Mrozek, D., Małysiak, B., Kozielski, S.: An optimal alignment of proteins energy characteristics with crisp and fuzzy similarity awards. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1508–1513 (2007)

    Google Scholar 

  32. Mrozek, D., Małysiak, B., Kozielski, S.: EAST: energy alignment search tool. In: Wang, L., et al. (eds.): Proceedings of the 3rd IEEE International Conference on Fuzzy Systems and Knowledge Discovery. Xi’an, China, Lecture Notes Computer Science, vol. 4223, pp. 696–705. Springer, Berlin (2006)

    Google Scholar 

  33. Mrozek, D., Małysiak, B., Kozielski, S.: Energy profiles in detection of protein structure modifications. In: Proceedings of the IEEE International Conference on Computing and Informatics, Kuala Lumpur, pp. 1–6 (2006)

    Google Scholar 

  34. Mrozek, D., Małysiak, B., Kozielski, S.: Energy properties of protein structures in the analysis of the human RAB5A cellular activity. Adv. Intell. Soft Comput. 59, 121–131 (2009)

    Google Scholar 

  35. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S., Górczynska-Kosiorz, S.: The EDML format to exchange energy profiles of protein molecular structures. Lecture Notes Computer Science, vol. 5754, Springer, pp. 146–157 (2009)

    Google Scholar 

  36. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S., Świerniak, A.: The Energy Distribution Data Bank: collecting energy features of protein molecular structures. In Proceedings of the 9th IEEE International Conference on Bioinformatics and Bioengineering, IEEE, pp. 1–6 (2009)

    Google Scholar 

  37. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S.: Alignment of protein structure energy patterns represented as sequences of fuzzy numbers. In: Fuzzy Information Processing Society, 2009. NAFIPS 2009. Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6 (2009)

    Google Scholar 

  38. Mrozek, D., Małysiak-Mrozek, B.: An improved method for protein similarity searching by alignment of fuzzy energy signatures. Int. J. Comput. Intell. Syst. 4(1):75–88 (2011)

    Google Scholar 

  39. Mrozek, D., Małysiak-Mrozek, B.: CASSERT: a two-phase alignment algorithm for matching 3D structures of proteins. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013, CCIS, vol. 370, pp. 334–343 (2013)

    Google Scholar 

  40. Mrozek, D., Mastej, A., Małysiak, B.: Protein molecular viewer for visualizing structures stored in the PDBML format. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine, AISC, vol. 47, pp. 377–386. Springer, Berlin (2008)

    Google Scholar 

  41. Mrozek, D., Wieczorek, D., Małysiak-Mrozek, B., Kozielski, S.: PSS-SQL: protein secondary structure–structured query language. In: Proceedings of 32th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2010, Buenos Aires, Argentina, pp. 1073–1076 (2010)

    Google Scholar 

  42. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S.: Protein comparison by the alignment of fuzzy energy signatures. RSKT 2009. Lect. Notes Comput. Sci. 5589, 289–296 (2009)

    Article  Google Scholar 

  43. Mrozek, D., Brożek, M., Małysiak-Mrozek, B.: Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA. J. Mol. Model 20, 2067 (2014)

    Article  Google Scholar 

  44. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Google Scholar 

  45. Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comp. Chem. 25, 1656–1676 (2004)

    Article  Google Scholar 

  46. Pearson, W.R.: Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132, 185–219 (2000)

    Google Scholar 

  47. Ramachandran, G.N., Ramakrishnan, C., Sasisekaran, V.: Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963)

    Article  Google Scholar 

  48. Rost, B., Liu, J.: The predict protein server. Nucleic Acids Res. 31(13), 3300–3304 (2003)

    Google Scholar 

  49. Sayle, R.: RasMol, molecular graphics visualization tool. Biomolecular Structures Group, Glaxo Welcome Research & Development, Stevenage, Hartfordshire, 5/02/2013 (1998). http://www.umass.edu/microbio/rasmol/

  50. Schrödinger, L.L.C.: The PyMOL molecular graphics system, version 1.3r1 (2010). http://www.pymol.org

  51. Schulz, G.E., Schirmer, R.H.: Principles of Protein Structure. Springer, New York (1979)

    Book  Google Scholar 

  52. Shapiro, J., Brutlag, D.: FoldMiner and LOCK2: protein structure comparison and motif discovery on the web. Nucleic Acids Res. 32, 536–541 (2004)

    Article  Google Scholar 

  53. Shindyalov, I., Bourne, P.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

    Article  Google Scholar 

  54. Smith, T., Waterman, M.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  55. Smith, G.D., Dodson, G.G.: The structure of a rhombohedral R6 insulin hexamer that binds phenol. Biopolymers 32(4), 441–445 (1992)

    Article  Google Scholar 

  56. Söding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005)

    Article  Google Scholar 

  57. Stanek, D., Mrozek, D., Małysiak-Mrozek, B.: MViewer: visualization of protein molecular structures stored in the PDB, mmCIF and PDBML data formats. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013, CCIS vol. 370, pp. 323–333 (2013)

    Google Scholar 

  58. Taylor, W.R., Orengo, C.A.: A local alignment method for protein structure motifs. J. Mol. Biol. 233, 488–497 (1993)

    Article  Google Scholar 

  59. Warecki, S., Znamirowski, L.: Random simulation of the nanostructures conformations. In: Proceedings of International Conference on Computing, Communication and Control Technology, vol. 1, The International Institute of Informatics and Systemics, Austin, Texas, pp. 388–393 (2004)

    Google Scholar 

  60. Watson, H.: The stereochemistry of the protein myoglobin. Prog. Stereochem. 24, 299 (1969)

    Google Scholar 

  61. Wu, S., Skolnick, J., Zhang, Y.: Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5, 17 (2007)

    Article  Google Scholar 

  62. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear programming, the inaugural issue. J. Bioinform. Comput. Biol. 1(1), 95–117 (2003)

    Google Scholar 

  63. Xu, D., Zhang, Y.: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80(7), 1715–1735 (2012)

    Google Scholar 

  64. Yang, Y., Faraggi, E., Zhao, H., Zhou, Y.: Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates. Bioinformatics 27, 2076–2082 (2011)

    Article  Google Scholar 

  65. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(2), 246–255 (2003)

    Google Scholar 

  66. Zhu, J., Weng, Z.: FAST: a novel protein structure alignment algorithm. Proteins 58, 618–627 (2005)

    Article  Google Scholar 

  67. Znamirowski, L.: Non-gradient, sequential algorithm for simulation of nascent polypeptide folding. Computational Science ICCS 2005. Lecture Notes in Computer Science vol. 3514, pp. 766–774 (2005)

    Google Scholar 

  68. Znamirowski, L.: Switching. VLSI Structures, Reprogrammable FPAA Structures, Nanostructures. Studia Informatica, vol. 25, no. 4A (60), Gliwice, pp. 1–236 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Mrozek .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Mrozek, D. (2014). Formal Model of 3D Protein Structures for Functional Genomics, Comparative Bioinformatics, and Molecular Modeling. In: High-Performance Computational Solutions in Protein Bioinformatics. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06971-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06971-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06970-8

  • Online ISBN: 978-3-319-06971-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics