Skip to main content

Nonlinear Nonlocal Reaction-Diffusion Equations

  • Chapter
  • First Online:
Advances in Differential Equations and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 4))

Abstract

Let \(\varOmega \subset \mathbb{R}^{N}\), and J be a nonnegative function defined in Ω ×Ω. We consider the problem

$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{ll} u_{t}(x,t)& =\int _{\varOmega }J(x,y)u(y,t)\mathit{dy} - h(x)u(x,t) + f(x,u(x,t)),\,x \in \varOmega,\;t > 0 \\ u(x,0) & = u_{0}(x),\quad x \in \varOmega,\end{array} \right.& &{}\end{array}$$
(1)

with h ∈ L (Ω), \(u_{0} \in L^{p}(\varOmega )\) and the function f defined as \(f:\varOmega \times \mathbb{R}\rightarrow \mathbb{R}\), that maps (x, s) into f(x, s). We assume f globally Lipschitz or f locally Lipschitz in the variable \(s \in \mathbb{R}\), uniformly with respect to x ∈ Ω, and f satisfies that there exist \(C \in \mathbb{R}\) and D ≥ 0 such that

$$\displaystyle{ f(\cdot,s)s \leq \mathit{Cs}^{2} + D\vert s\vert,\;\forall s \in \mathbb{R}. }$$

The aim is to study the existence and uniqueness and we give some asymptotic estimates of the norm L (Ω) of the solution u of the problem (1), following the ideas of [2], and we prove the existence of two ordered extremal equilibria, like in [6], which give some information about the set that attracts the dynamics of the solution of (1), for all u 0 in L (Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreu, F., Mazon, J.M., Rossi, J.D., Toledo, J.: The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ. 8(1), 189–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arrieta, J.M., Carvalho, A.N., Rodriguez-Bernal, A.: Attractors of parabolic problems with nonlinear boundary conditions. Uniform Bounds. Commun. Part. Differ. Equ. 25(1–2), 1–37 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates, P., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher dimensions. J. Stat. Phys. 95, 1119–1139 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. 86, 271–291 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47(6), 483–517 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rodriguez-Bernal, A., Vidal-Lopez, A.: Extremal equilibria for nonlinear parabolic equations in bounded domains and applications. J. Differ. Equ. 244, 2983–3030 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal Rodríguez-Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez-Bernal, A., Sastre-Gómez, S. (2014). Nonlinear Nonlocal Reaction-Diffusion Equations. In: Casas, F., Martínez, V. (eds) Advances in Differential Equations and Applications. SEMA SIMAI Springer Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-06953-1_6

Download citation

Publish with us

Policies and ethics