Skip to main content

Basic Concepts in Electricity and Electrotherapy

  • Chapter
  • First Online:

Abstract

Electrotherapy is the use of electrical energy as a medical treatment. Although electrotherapy has been a component of clinical practice since the early days, its delivery has changed remarkably and continues to do so. Modern electrotherapy practice needs to be evidence based and used appropriately. The electrotherapy modalities involve the introduction of some physical energy into a biological system. Every living cell has a membrane potential, with the inside of the cell being negative relative to its external surface. In this chapter, the fundamental concepts of electricity and the basis of electrotherapy were discussed. The role of stimulation parameters for electrotherapies was also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Watson T (2008) Electrotherapy: evidence based practice. Churchill Livingstone/Elsevier, Edinburgh

    Google Scholar 

  2. Watson T (2010) Narrative review: key concepts with electrophysical agents. Phys Ther Rev 15:351–359

    Article  Google Scholar 

  3. Sluka KA, Vance CG, Lisi TL (2005) High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. J Neurochem 95:1794–1801

    Article  PubMed  CAS  Google Scholar 

  4. Kararmaz A, Kaya S, Karaman H, Turhanoglu S (2004) Effect of the frequency of transcutaneous electrical nerve stimulation on analgesia during extracorporeal shock wave lithotripsy. Urol Res 32:411–415

    Article  PubMed  Google Scholar 

  5. Han JS, Chen XH, Sun SL, Xu XJ, Yuan Y, Yan SC, Hao JX, Terenius L (1991) Effect of low- and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain 47:295–298

    Article  PubMed  CAS  Google Scholar 

  6. Martellucci J, Naldini G (2012) The role of reprogramming in sacral nerve modulation for constipation. Colorectal Dis 14:254–255

    Article  PubMed  CAS  Google Scholar 

  7. Duelund-Jakobsen J, Dudding T, Bradshaw E, Buntzen S, Lundby L, Laurberg S, Vaizey C (2012) Randomized double-blind crossover study of alternative stimulator settings in sacral nerve stimulation for faecal incontinence. Br J Surg 99:1445–1452

    Article  PubMed  CAS  Google Scholar 

  8. Dudding TC, Hollingshead JR, Nicholls RJ, Vaizey CJ (2011) Sacral nerve stimulation for faecal incontinence: optimizing outcome and managing complications. Colorectal Dis 13:e196–e202

    Article  PubMed  CAS  Google Scholar 

  9. Govaert B, Rietveld MP, van Gemert WG, Baeten CG (2011) The role of reprogramming in sacral nerve modulation for faecal incontinence. Colorectal Dis 13:78–81

    Article  PubMed  CAS  Google Scholar 

  10. Kloth LC (2005) Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds 4:23–44

    Article  PubMed  Google Scholar 

  11. Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  12. Barry DT (1991) AAEM minimonograph #36: basic concepts of electricity and electronics in clinical electromyography. Muscle Nerve 14:937–946

    Article  PubMed  CAS  Google Scholar 

  13. Mc Creery DB, Agnew WF, Yuen TG, Bullara LA (1995) Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med Biol Eng Comput 33:426–429

    Article  CAS  Google Scholar 

  14. Kiernan MC, Hales JP, Gracies JM, Mogyoros I, Burke D (1997) Paraesthesiae induced by prolonged high frequency stimulation of human cutaneous afferents. J Physiol 501(part 2):461–471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Robinson LR, Nielsen VK (1990) Limits of normal nerve function during high-frequency stimulation. Muscle Nerve 13:279–285

    Article  PubMed  CAS  Google Scholar 

  16. Reboul J, Rosenblueth A (1939) The blocking and deblocking effects of alternating currents on nerve. Am J Physiol 125:251–264

    Google Scholar 

  17. Bowman BR, McNeal DR (1986) Response of single alpha motoneurons to high-frequency pulse trains. Firing behavior and conduction block phenomenon. Appl Neurophysiol 49:121–138

    PubMed  CAS  Google Scholar 

  18. Ishigooka M, Hashimoto T, Sasagawa I, Izumiya K, Nakada T (1994) Modulation of the urethral pressure by high-frequency block stimulus in dogs. Eur Urol 25:334–337

    PubMed  CAS  Google Scholar 

  19. Li JS, Hassouna M, Sawan M, Duval F, Elhilali MM (1992) Electrical stimulation induced sphincter fatigue during voiding. J Urol 148:949–952

    PubMed  CAS  Google Scholar 

  20. Li JS, Hassouna M, Sawan M, Duval F, Elhilali MM (1995) Long-term effect of sphincteric fatigue during bladder neurostimulation. J Urol 153:238–242

    Article  PubMed  CAS  Google Scholar 

  21. Shaker HS, Tu LM, Robin S, Arabi K, Hassouna M, Sawan M, Elhilali MM (1998) Reduction of bladder outlet resistance by selective sacral root stimulation using high-frequency blockade in dogs: an acute study. J Urol 160(3 Pt1):901–907

    PubMed  CAS  Google Scholar 

  22. Tai C, Roppolo JR, de Groat WC (2004) Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. J Urol 172(5 part 1):2069–2072

    Article  PubMed  Google Scholar 

  23. Matzel KE, Schmidt RA, Tanagho EA (1990) Neuroanatomy of the striated muscular anal continence mechanism. Implications for the use of neurostimulation. Dis Colon Rectum 33:666–673

    Article  PubMed  CAS  Google Scholar 

  24. Schultz-Lampel D, Jiang C, Lindstrom S, Thuroff JW (1998) Experimental results on mechanisms of action of electrical neuromodulation in chronic urinary retention. World J Urol 16:301–304

    Article  PubMed  CAS  Google Scholar 

  25. Chesterton LS, Barlas P, Foster NE, Lundeberg T, Wright CC, Baxter GD (2002) Sensory stimulation (TENS): effects of parameter manipulation on mechanical pain thresholds in healthy human subjects. Pain 99:253–262

    Article  PubMed  Google Scholar 

  26. Gracanin F, Trnkoczy A (1975) Optimal stimulus parameters for minimum pain in the chronic stimulation of innervated muscle. Arch Phys Med Rehabil 56:243–249

    PubMed  CAS  Google Scholar 

  27. Dudding TC, Vaizey CJ, Gibbs A, Kamm MA (2009) Improving the efficacy of sacral nerve stimulation for faecal incontinence by alteration of stimulation parameters. Br J Surg 96:778–784

    Article  PubMed  CAS  Google Scholar 

  28. Dinning PG, Fuentealba SE, Kennedy ML, Lubowski DZ, Cook IJ (2007) Sacral nerve stimulation induces pan-colonic propagating pressure waves and increases defecation frequency in patients with slow transit constipation. Colorectal Dis 9:123–132

    Article  PubMed  CAS  Google Scholar 

  29. Gorman PH, Mortimer JT (1983) The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng 30:407–414

    Article  PubMed  CAS  Google Scholar 

  30. Walsh DM, Foster NE, Baxter GD, Allen JM (1995) Transcutaneous electrical nerve stimulation. Relevance of stimulation parameters to neurophysiological and hypoalgesic effects. Am J Phys Med Rehabil 74:199–206

    Article  PubMed  CAS  Google Scholar 

  31. Mesin L, Merlo E, Merletti R, Orizio C (2010) Investigation of motor unit recruitment during stimulated contractions of tibialis anterior muscle. J Electromyogr Kinesiol 20:580–589

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Martellucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martellucci, J. (2015). Basic Concepts in Electricity and Electrotherapy. In: Martellucci, J. (eds) Electrical Stimulation for Pelvic Floor Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-06947-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06947-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06946-3

  • Online ISBN: 978-3-319-06947-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics