Skip to main content

A Geometric Approach to the Optimal Control of Nonholonomic Mechanical Systems

  • Chapter

Part of the book series: Springer INdAM Series ((SINDAMS,volume 11))

Abstract

In this paper, we describe a constrained Lagrangian and Hamiltonian formalism for the optimal control of nonholonomic mechanical systems. In particular, we aim to minimize a cost functional, given initial and final conditions where the controlled dynamics are given by a nonholonomic mechanical system. In our paper, the controlled equations are derived using a basis of vector fields adapted to the nonholonomic distribution and the Riemannian metric determined by the kinetic energy. Given a cost function, the optimal control problem is understood as a constrained problem or equivalently, under some mild regularity conditions, as a Hamiltonian problem on the cotangent bundle of the nonholonomic distribution. A suitable Lagrangian submanifold is also shown to lead to the correct dynamics. Application of the theory is demonstrated through several examples including optimal control of the Chaplygin sleigh, a continuously variable transmission, and a problem of motion planning for obstacle avoidance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnold, V.: Dynamical Systems, vol. III. Springer, New York/Heidelberg/Berlin (1988)

    Google Scholar 

  2. Balseiro, P., de León, M., Marrero, J.C., Martín de Diego, D.: The ubiquity of the symplectic Hamiltonian equations in mechanics. J. Geom. Mech. 1, 11–34 (2009)

    Google Scholar 

  3. Barbero Liñan, M., de León, M., Marrero, J.C., Martín de Diego, D., Muñoz Lecanda, M.: Kinematic reduction and the Hamilton-Jacobi equation. J. Geom. Mech. 3, 207–237 (2012)

    Google Scholar 

  4. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics Series, vol. 24. Springer, New York (2003)

    Google Scholar 

  5. Bloch, A., Crouch, P.: Nonholonomic and vakonomic control systems on Riemannian manifolds. In: Enos, M.J. (ed.) Dynamics and Control of Mechanical Systems. Fields Institute Communications, vol. 1, pp. 25–52. AMS, Providence (1993)

    Google Scholar 

  6. Bloch, A., Crouch, P.: Nonholonomic control systems on Riemannian manifolds. SIAM J. Control Optim. 33, 126–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch, A., Crouch, P.: On the equivalence of higher order variational problems and optimal control problems. In: Proceedings of the IEEE International Conference on Decision and Control, Kobe, pp. 1648–1653 (1996)

    Google Scholar 

  8. Bloch, A., Crouch, P.: Optimal control, optimization, and analytical mechanics. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory, pp. 268–321. Springer, New York (1998)

    Google Scholar 

  9. Bloch, A., Hussein, I.: Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans. Autom. Control 53, 668–682 (2008)

    Article  MathSciNet  Google Scholar 

  10. Bloch, A., Marsden, J., Zenkov D.: Nonholonomic mechanics. Not. AMS 52, 324–333 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Bloch, A., Marsden, J., Zenkov, D.: Quasivelocities and symmetries in non-holonomic systems. Dyn. Syst. 24(2), 187–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borisov, A., Mamaev, I.: On the history of the development of the nonholonomic dynamics. Regul. Chaot. Dyn. 7(1), 43–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bullo, F., Lewis, A.: Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems. Texts in Applied Mathematics. Springer, New York (2005)

    Book  Google Scholar 

  14. Chaplygin, S.: On the theory of motion of nonholonomic systems. The theorem on the reducing multiplier. Math. Sbornik XXVIII, 303–314 (1911, in Russian)

    Google Scholar 

  15. Cortés, J., Martínez, E.: Mechanical control systems on Lie algebroids. IMA J. Math. Control. Inform. 21, 457–492 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cortés, J., de León, M., Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids. Discret. Cont. Dyn. Syst. Ser. A 24(2), 213–271 (2009)

    Article  MATH  Google Scholar 

  17. Grabowska, K., Grabowski, J., Urbanski, P.: Geometrical mechanics on algebroids. Int. J. Geom. Methods Mod. Phys. 3(3), 559–575 (2006)

    Article  MathSciNet  Google Scholar 

  18. Grabowski, J., de León, M., Marrero, J.C., Martín de Diego, D.: Nonholonomic constraints: a new viewpoint. J. Math. Phys. 50(1), 013520, 17 pp. (2009)

    Google Scholar 

  19. Holm, D.: Geometric mechanics. Part I and II. Imperial College Press, London; distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack (2008)

    Google Scholar 

  20. Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press (1997)

    Google Scholar 

  21. Jurdjevic, V.: Optimal control, geometry and mechanics. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory, pp. 227–267. Springer, New York (1998)

    Google Scholar 

  22. Kelly, S., Murray, R.: Geometric phases and robotic locomotion. J. Robot. Syst. 12, 417–431 (1995)

    Article  MATH  Google Scholar 

  23. Khatib, O.: Real-time robots obstacle avoidance for manipulators and mobile robots. Int. J. Robot. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  24. Kodistschek, D.E., Rimon, E.: Robot navigation function on manifolds with boundary. Adv. Appl. Math. 11(4), 412–442 (1980)

    Article  Google Scholar 

  25. Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leimkuhler, B., Reich, S.: Symplectic integration of constrained Hamiltonian systems. Math. Comput. 63, 589–605 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  28. Leimkmuhler, B., Skeel, R.: Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112, 117–125 (1994)

    Article  MathSciNet  Google Scholar 

  29. de León, M.: A historical review on nonholonomic mechanics. RACSAM 106, 191–224 (2012)

    Article  MATH  Google Scholar 

  30. de León, M., Martín de Diego, D.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37(7), 3389–3414 (1996)

    Google Scholar 

  31. de León, M., Rodrigues, P.R.: Generalized Classical Mechanics and Field Theory. North-Holland Mathematical Studies, vol. 112. North-Holland, Amsterdam (1985)

    Google Scholar 

  32. Lewis, A.D.: Simple mechanical control systems with constraints. IEEE Trans. Autom. Control 45, 1420–1436 (2000)

    Article  MATH  Google Scholar 

  33. Libermann, P., Marle, Ch-M.: Symplectic Geometry and Analytical Mechanics. Mathematics and its Applications, vol. 35. D. Reidel Publishing Co., Dordrecht (1987)

    Google Scholar 

  34. Marrero, J.C., Martín de Diego, D., Stern, A.: Symplectic groupoids and discrete constrained Lagrangian mechanics. Discret. Cont. Dyn. Syst. Ser. A 35(1), 367–397 (2015)

    Google Scholar 

  35. Maruskin, J.M., Bloch, A., Marsden, J.E., Zenkov, D.V.: A fiber bundle approach to the transpositional relations in nonholonomic mechanics. J. Nonlinear Sci. 22(4), 431–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Modin, K., Verdier, O.: Integrability of nonholonomically coupled oscillators. J. Discret. Cont. Dyn. Syst. 34(3), 1121–1130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Murray, R., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Autom. Control 38, 700–716 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. American Mathematical Society, Providence (1972)

    Google Scholar 

  39. Ostrowski, J.P.: Computing reduced equations for robotic systems with constraints and symmetries. IEEE Trans. Robot. Autom. 15(1), 111–123 (1999)

    Article  MathSciNet  Google Scholar 

  40. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation, vol. 7. Chapman and Hall, London (1994)

    Google Scholar 

  41. Sniatycki, J., Tulczyjew, W.M.: Generating forms of Lagrangian submanifolds. Indiana Univ. Math. J. 22(3), 267–275 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sussman, H.: Geometry and optimal control. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory, pp. 140–198. Springer, New York (1998)

    Google Scholar 

  43. Sussman, H., Jurdjevic, V.: Contollability of nonlinear systems. J. Differ. Equ. 12, 95116 (1972)

    Google Scholar 

  44. Tulczyjew, W.M.: Les sous-variétés lagrangiennes et la dynamique hamiltonienne. C. R. Acad. Sci. Paris Série A 283, 15–18 (1976)

    MathSciNet  MATH  Google Scholar 

  45. Tulczyjew, W.M.: Les sous-variétés lagrangiennes et la dynamique lagrangienne. C. R. Acad. Sci. Paris Série A 283, 675–678 (1976)

    MathSciNet  MATH  Google Scholar 

  46. Weinstein, A.: Lectures on Symplectic Manifolds. CBMS Regional Conference Series in Mathematics, vol. 29. American Mathematical Society, Providence (1979)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by grants MTM 2013-42870-P, MTM 2009-08166-E, IRSES-project “Geomech-246981” and NSF grants INSPIRE-1363720 and DMS-1207693. We wish to thank Klas Modin and Olivier Verdier for allowing us to use their description of the Continuously Variable Transmission Gearbox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bloch, A., Colombo, L., Gupta, R., de Diego, D.M. (2015). A Geometric Approach to the Optimal Control of Nonholonomic Mechanical Systems. In: Bettiol, P., Cannarsa, P., Colombo, G., Motta, M., Rampazzo, F. (eds) Analysis and Geometry in Control Theory and its Applications. Springer INdAM Series, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-06917-3_2

Download citation

Publish with us

Policies and ethics