Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 485 Accesses

Abstract

This chapter presents the major findings of the thesis. The results are presented in greater detail than in the original journal publications. The chapter includes crystallization under quasistatic tension, strain amplification in filled rubbers, and crack tip scans under static as well as dynamic conditions. A special emphasis is put on the kinetics of the strain-induced crystallization in natural rubber, obtained by strain-jump experiments, resolving the crystallization kinetics at unrivalled timescales in the millisecond range. The finite kinetics are reflected in the crystallization under dynamic cyclic load and are shown to affect the mechanical and tearing performance of rubbers at high frequencies, which usually occur in tires. A novel approach is used to quantify the filler orientation under strain, using WAXD and USAXS, coupled with an analytical model. SEM observations of local processes in the crack propagation zone with unprecedented magnification are presented and given new insight into the deformation mechanisms on the ?m-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    During sample preparation, the notched samples were manually torn to propagate the crack a little bit and to convert the notch tip into a sharp crack tip.

  2. 2.

    For the sake of brevity, the crystallinity after the nucleation step is termed initial crystallinity in the following. It is a fitting parameter, but closely resembles the first measured crystallinity values for \(t\rightarrow 0\). Thus its determination presumably depends on the time resolution of the experiment.

  3. 3.

    An attempt was made to quantify the orientation of the carbon black aggregates (Sect. A.3).

  4. 4.

    A self-written software asks the user to click at the characteristic position in the image and then loads the next image (displaying the previous one for better orientation in a separate window). After the last image, the relative displacement vectors between certain characteristic features are computed.

References

  1. B. Huneau, Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84(3), 425–452 (2011). doi:10.5254/1.3601131. http://link.aip.org/link/RCT/84/425/1

  2. S. Poompradub et al., Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates. J. Appl. Phys. 97, 103529 (2005)

    Article  Google Scholar 

  3. S. Trabelsi, P.A. Albouy, J. Rault, Effective local deformation in stretched filled rubber. Macromolecules 36(24), 9093–9099 (2003)

    Article  CAS  Google Scholar 

  4. J. Rault et al., Stress-induced crystallization and reinforcement in filled natural rubbers: 2H NMR study. Macromolecules 39(24), 8356–8368 (2006)

    Article  CAS  Google Scholar 

  5. S. Dupres et al., Local deformation in carbon black-filled polyisoprene rubbers studied by NMR and X-ray diffraction. Macromolecules 42(7), 2634–2644 (2009)

    Article  CAS  Google Scholar 

  6. S.D. Gehman, J.E. Field, X-ray structure of rubber-carbon black mixtures. Ind. Eng. Chem. 32(10), 1401–1407 (1940)

    Article  CAS  Google Scholar 

  7. S. Beurrot, B. Huneau, E. Verron, Strain-induced crystallization of natural rubber subjected to biaxial loading conditions as revealed by X-ray diffraction. In: Proceedings of the VII. European Conference on Constitutive Models for Rubber, pp. 23–28 (2011)

    Google Scholar 

  8. S.C. Nyburg, X-ray determination of crystallinity in deformed natural rubber. Br. J. Appl. Phys. 5, 321–324 (1954)

    Article  CAS  Google Scholar 

  9. J.M. Chenal et al., Parameters governing strain induced crystallization in filled natural rubber. Polymer 48(23), 6893–6901 (2007)

    Article  CAS  Google Scholar 

  10. S. Beurrot et al., In-situ synchrotron X-ray diffraction study of strain-induced crystallization of natural rubber during fatigue tests. In: Proceedings of the VII. European Conference on Constitutive Models for Rubber, pp. 353–358 (2011)

    Google Scholar 

  11. M. Klüppel, The role of disorder in filler reinforcement of elastomers on various length scales. Adv. Polym. Sci. 164, 1–86 (2003)

    Article  Google Scholar 

  12. L.E. Alexander, X-ray Diffraction Methods in Polymer Science (Wiley-Interscience, New York, 1969)

    Google Scholar 

  13. M. Tosaka et al., Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 37(9), 3299–3309 (2004)

    Article  CAS  Google Scholar 

  14. M. Tosaka, Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation. Polym. J. 39(12), 1207–1220 (2007)

    Article  CAS  Google Scholar 

  15. L.B. Tunnicliffe, A.G. Thomas, J.J.C. Busfield, The effect of fillers on crosslinking, swelling and mechanical properties of peroxide-cured rubbers. In: Proceedings of the VIII. European Conference on Constitutive Models for Rubber. Balkema, pp. 563–568 (2013)

    Google Scholar 

  16. S. Trabelsi, P.A. Albouy, J. Rault, Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 35(27), 10054–10061 (2002)

    Article  CAS  Google Scholar 

  17. S. Trabelsi, P.A. Albouy, J. Rault, Stress-induced crystallization properties of natural and synthetic cis-polyisoprene. Rubber Chem. Technol. 77(2), 303–316 (2004)

    Article  CAS  Google Scholar 

  18. D.J. Lee, J.A. Donovan, Microstructural changes in the crack tip region of carbon-black-filled natural rubber. Rubber Chem. Technol. 60(5), 910–923 (1987)

    Article  CAS  Google Scholar 

  19. J.B. Le Cam, E. Toussaint, The mechanism of fatigue crack growth in rubbers under severe loading: the effect of stress-induced crystallization. Macromolecules 43(10), 4708–4714 (2010)

    Article  Google Scholar 

  20. N. Saintier, G. Cailletaud, R. Piques, Cyclic loadings and crystallization of natural rubber: an explanation of fatigue crack propagation reinforcement under a positive loading ratio. Mater. Sci. Eng. A 528(3), 1078–1086 (2011). ISSN: 0921–5093, doi:10.1016/j.msea.2010.09.079. http://www.sciencedirect.com/science/article/pii/S0921509310011251

  21. M.M. Alam, H. Osaka, T. Asano, Biaxial orientation mechanism of drawn natural rubber. III. Determination of the orientation function from wide-angle X-ray diffraction pattern. J. Macromol. Sci. Part B: Phys. 47(2), 317–337 (2008)

    Article  CAS  Google Scholar 

  22. M.M. Alam, T. Asano, Biaxial orientation mechanism of drawn natural rubber. IV. The effect of aspect ratio. J. Macromol. Sci. B 47(4), 754–764 (2008)

    Article  CAS  Google Scholar 

  23. R. Oono, K. Miyasaka, K. Ishikawa, Crystallization kinetics of biaxially stretched natural rubber. J. Polym. Sci. Polym. Phys. Ed. 11(8), 1477–1488 (1973)

    CAS  Google Scholar 

  24. K. Brüning et al., Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45(19), 7914–7919 (2012)

    Article  Google Scholar 

  25. L. Mandelkern, Crystallization kinetics of homopolymers: overall crystallization: a review. Biophys. Chemi. 112(2–3), 109–116 (2004)

    Article  CAS  Google Scholar 

  26. L. Mandelkern, Crystallization of Polymers Volume 2: Kinetics and Mechanisms (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  27. P.G. De Gennes, Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60(12), 5030–5042 (1974)

    Article  Google Scholar 

  28. R.H. Somani et al., Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46(20), 8587–8623 (2005)

    Article  CAS  Google Scholar 

  29. D.J. Dunning, P.J. Pennells, Effect of strain on rate of crystallization of natural rubber. Rubber Chem. Technol. 40, 1381 (1967)

    Article  CAS  Google Scholar 

  30. J.C. Mitchell, D.J. Meier, Rapid stress-induced crystallization in natural rubber. J. Polym. Sci. A-2 Polym. Phys. 6(10), 1689–1703 (1968)

    Article  CAS  Google Scholar 

  31. A.N. Gent, Crystallization and the relaxation of stress in stretched natural rubber vulcanizates. Trans. Faraday Soc. 50, 521–533 (1954)

    Article  CAS  Google Scholar 

  32. D. Luch, G.S.Y. Yeh, Strain-induced crystallization of natural rubber. III. Reexamination of axial-stress changes during oriented crystallization of natural rubber vulcanizates. J. Polym. Sci. Polym. Phys. Ed. 11(3), 467–486 (1973)

    CAS  Google Scholar 

  33. H.G. Kim, L. Mandelkern, Crystallization kinetics of stretched natural rubber. J. Polym. Sci. A-2 Polym. Phys. 6(1), 181–196 (1968)

    Article  CAS  Google Scholar 

  34. G.S.Y. Yeh, Morphology of strain-induced crystallization of polymers. Part I. Rubber Chem. Technol. 50, 863–873 (1977)

    Article  CAS  Google Scholar 

  35. M. Tosaka et al., Crystallization of stretched network chains in cross-linked natural rubber. J. Appl. Phys. 101, 084909 (2007)

    Article  Google Scholar 

  36. M. Tosaka et al., Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39(15), 5100–5105 (2006)

    Article  CAS  Google Scholar 

  37. M. Tosaka et al., Detection of fast and slow crystallization processes in instantaneouslystrained samples of cis-1,4-polyisoprene. Polymer 53(3), 864–872 (2012)

    Article  CAS  Google Scholar 

  38. J.B. Le Cam, E. Toussaint, Cyclic volume changes in rubber. Mech. Mater. 41(7), 898–901 (2009)

    Article  Google Scholar 

  39. M.F. Acken, W.E. Singer, W. Davey, X-ray study of rubber structure. Ind. Eng. Chem. 24(1), 54–57 (1932)

    Article  CAS  Google Scholar 

  40. H. Hiratsuka et al., Measurement of orientation crystallization rates of linear polymers by means of dynamic X-ray diffraction technique. II. Frequency dispersion of straininduced crystallization coefficient of natural rubber vulcanizates in subsonic range. J. Macromol. Sci. B 8(1–2), 101–126 (1973). doi:10.1080/00222347308245796. eprint: http://www.tandfonline.com/doi/pdf/10.1080/00222347308245796. http://www.tandfonline.com/doi/abs/10/00222347308245796

  41. H. Kawai, Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials. Rheol. Acta 14(1), 27–47 (1975). ISSN: 0035–4511. http://dx.doi.org/10.1007/BF01527209

  42. N. Candau et al., Characteristic time of strain induced crystallization of crosslinked natural rubber. Polymer 53(13), 2540–2543 (2012)

    Article  CAS  Google Scholar 

  43. K. Brüning et al., Strain-induced crystallization around a crack tip in natural rubber under dynamic load. Polymer 54(22), 6200–6205 (2013)

    Article  Google Scholar 

  44. P. Rublon et al., In situ synchrotron wide-angle X-ray diffraction investigation of fatigue cracks in natural rubber. J. Synchrotron Radiat. 20(1), 105–109 (2012)

    Article  Google Scholar 

  45. F. Ehrburger-Dolle et al., Anisotropic ultra-small-angle X-ray scattering in carbon black filled polymers. Langmuir 17(2), 329–334 (2001)

    Article  CAS  Google Scholar 

  46. F. Ehrburger-Dolle, F. Bley, E. Geissler, F. Livet, I. Morfin, C. Rochas, Filler networks in elastomers. Macromol. Symp. 200(1), 157–168 (2003). http://onlinelibrary.wiley.com/doi/10.1002/masy.200351016/

  47. G.J. Schneider, Correlation of mass fractal dimension and asymmetry. J. Chem. Phys. 130, 234912 (2009)

    Article  Google Scholar 

  48. G.J. Schneider, D. Göritz, A novel model for the interpretation of small-angle scattering experiments of self-affine structures. J. Appl. Crystallogr. 43(1), 12–16 (2009). ISSN: 0021–8898

    Google Scholar 

  49. G.J. Schneider, D. Göritz, Strain induced anisotropies in silica polydimethylsiloxane composites. J. Chem. Phys. 133, 024903 (2010)

    Article  CAS  Google Scholar 

  50. H. Zhang et al., Nanocavitation in carbon black filled Styrene-butadiene rubber under tension detected by real time small angle X-ray scattering. Macromolecules 45(3), 1529–1543 (2012)

    Article  CAS  Google Scholar 

  51. K. Legorju-Jago, C. Bathias, Fatigue initiation and propagation in natural and synthetic rubbers. Int. J. Fatigue 24(2-4), 85–92 (2002)

    Article  CAS  Google Scholar 

  52. N. Aït Hocine et al., Experimental and finite element investigation of void nucleation in rubber-like materials. Int. J. Solids Struct. 48(9), 1248–1254 (2011)

    Article  Google Scholar 

  53. G. Michler, Electron Microscopy of Polymers (Springer, Berlin, 2008)

    Google Scholar 

  54. D. Göritz, Properties of rubber elastic systems at large strains. Macromol. Mater. Eng. 202(1), 309–329 (1992)

    Google Scholar 

  55. K. Agarwal, D.K. Setua, K. Sekhar, Scanning electron microscopy study on the influence of temperature on tear strength and failure mechanism of natural rubber vulcanizates. Polym. Test. 24(6), 781–789 (2005)

    Article  CAS  Google Scholar 

  56. J.B. Le Cam et al., Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules 37(13), 5011–5017 (2004)

    Article  Google Scholar 

  57. S. Beurrot, B. Huneau, E. Verron, In situ SEM study of fatigue crack growth mechanism in carbon black-filled natural rubber. J. Appl. Polym. Sci. 117(3), 1260–1269 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Brüning .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brüning, K. (2014). Results. In: In-situ Structure Characterization of Elastomers during Deformation and Fracture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06907-4_4

Download citation

Publish with us

Policies and ethics