Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 534 Accesses

Abstract

This chapter introduces the reader to the fields of research covered by this thesis and gives an overview of rubber materials, rubber processing, rubber reinforcement, X-ray scattering and diffraction, strain-induced crystallization, and cavitation in natural rubber. The chapter aims to provide the required background for the reading of this thesis to non-experts, but is also of interest to the experienced researcher, giving a broad literature review, citing more than 200 literature references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes thermoplastic elastomers are also classified as rubbers. These materials are melt-processable and are physically crosslinked rather than chemically.

  2. 2.

    Other sources, like dandelion and guayule (Parthenium argentatum), have been explored, but are not significant in practice.

  3. 3.

    Vinyl groups result from the 1,2-polymerization of butadiene, in contrast to the more common 1,4-polymerization.

  4. 4.

    Own tests showed that a standard formulation of natural rubber, including 1 phr sulfur, 1 phr stearic acid and 1.5 phr CBS (accelerator, N-cyclohexyl-2-benzothiazole-sulfenamide), but not containing any zinc oxide, would not vulcanize within 1 h at \(160\,^{\circ }\text {C}\).

  5. 5.

    \(G\) is the shear modulus; \(N\) is the number of chains per unit volume; \(k\) is the Boltzmann constant; \(T\) is the absolute temperature.

  6. 6.

    Nowadays, all industrially relevant standard carbon blacks for mechanical reinforcement are of N type, but historically other grades were common.

  7. 7.

    OAN: oil absorption number.

  8. 8.

    Cetyltrimethyl ammonium bromide.

  9. 9.

    Only IR grades with high cis-content can undergo SIC. Furthermore, IR crystallizes only in the crosslinked state [79].

  10. 10.

    Of course, the comparison should not be taken too quantitatively. NR and SBR are chemically different, and moreover NR has an inherent network resulting from its natural impurities and endgroup functionalization. However, from a practical point of view, reinforced SBR can often replace reinforced NR in less demanding applications.

  11. 11.

    The stretch ratio \(\alpha \) is defined as \(\alpha = \frac{l}{l_0}\), where \(l_0\) is the undeformed length and \(l\) is the deformed length. The relation between the stretch ratio \(\alpha \) and the strain \(\epsilon \) is \(\alpha = 1+\epsilon \).

  12. 12.

    The term pure shear might be somewhat misleading.Pure shear Simply speaking, the pure shear specimen is a tensile specimen with one of its dimensions transversal to the tensile direction being much larger than its extension along the tensile direction, such that transversal strains are restricted to one dimension. The name results from the fact that this deformation field can theoretically be obtained by exerting shear forces on the edges of the sample, along with a rotation of the sample [16].

  13. 13.

    In the framework of the FOR 597 research group, tear fatigue experiment were carried out on a Coesfeld machine at TU Chemnitz.

  14. 14.

    As opposed to grazing incidence geometry.

  15. 15.

    The brilliance is the photon flux (i.e. photons per time and per beam cross sectional area) normalized by solid angle (cf. beam divergence or collimation) and 0.1 % bandwidth (cf. monochromacity).

  16. 16.

    Following Eq. 1.15, the amplitude of a wave scattered by a proton is \(\left( \frac{m_p}{m_0}\right) ^2=3.37 \times 10^{6}\) times less than the amplitude of a wave scattered by an electron.

  17. 17.

    For a detailed derivation of Eq. 1.15, the reader is referred to Berne and Pecora [140].

  18. 18.

    Other definitions exist in literature, taking the form factor as the square of the definition in Eq. 1.19.

  19. 19.

    Dispersions with a particle volume fraction below 1 % are typically considered dilute [139].

  20. 20.

    Theoretically, the complete real space information can be restored under certain conditions if the coherence time of the incident beam is long relative to the exposure time. This is part of the motivation behind the development of X-ray free electron lasers (XFEL).

  21. 21.

    For a derivation, see e.g. Guinier [136].

  22. 22.

    For an overview of diffraction theories, see e.g. Ewald [146].

  23. 23.

    In polymer science, higher order diffraction peaks are frequently concealed due to imperfections and finite size effects.

  24. 24.

    Katz called it fibering what is now termed strain-induced crystallization.

  25. 25.

    Some dispute exists in literature about the precise value of the \(\beta \) angle, taking values up to 93\(^{\circ }\), suggesting a monoclinic unit cell.

  26. 26.

    The terms cavitation and void formation are often used interchangeably, however some authors prefer to use voids to describe stable hollow regions in thermoplastics and other glassy materials, whereas cavities is used in the context of elastomers for hollow regions growing in an unstable manner [194].

  27. 27.

    Unfilled typically specifies materials without reinforcing filler. Recipes containing additives like zinc oxide are thus classified as unfilled.

  28. 28.

    It should be noted that the rubbers studied by LeCam contained the unusually high amount of 10 phr of zinc oxide, which possibly stimulates cavitation.

References

  1. J. Loadman, Tears of the Tree: The Story of Rubber—A Modern Marvel (Oxford University Press, Oxford, 2005)

    Google Scholar 

  2. A. Hwee, Y. Tanaka, Structure of natural rubber. Trends Polym. Sci. (Oxford) 3(5), 493–513 (1993)

    Google Scholar 

  3. Y. Tanaka, Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 74(3), 355–375 (2001)

    CAS  Google Scholar 

  4. S. Toki et al., Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 46(13), 5238–5248 (2013)

    CAS  Google Scholar 

  5. S. Toki et al., New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction. Polymer 50(9), 2142–2148 (2009)

    CAS  Google Scholar 

  6. A.N. Gent, Engineering with Rubber: How to Design Rubber Components (Hanser Gardner, Cincinnati, 2001)

    Google Scholar 

  7. S. Trabelsi, P.A. Albouy, J. Rault, Stress-induced crystallization properties of natural and synthetic cis-polyisoprene. Rubber Chem. Technol. 77(2), 303–316 (2004)

    CAS  Google Scholar 

  8. M. Tosaka et al., Crystallization of stretched network chains in cross-linked natural rubber. J. Appl. Phys. 101, 084909 (2007)

    Google Scholar 

  9. Y. Miyamoto, H. Yamao, K. Sekimoto, Crystallization and melting of polyisoprene rubber under uniaxial deformation. Macromolecules 36(17), 6462–6471 (2003)

    CAS  Google Scholar 

  10. M. Tosaka, Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation. Polym. J. 39(12), 1207–1220 (2007)

    CAS  Google Scholar 

  11. G.G. Odian, Principles of Polymerization (Wiley, New York, 2007)

    Google Scholar 

  12. K. Nagdi, Rubber as an Engineering Material: Guideline for Users (Oxford University Press, New York, 1993)

    Google Scholar 

  13. G. Heideman et al., Activators in accelerated sulfur vulcanization. Rubber Chem. Technol. 77(3), 512–541 (2004)

    CAS  Google Scholar 

  14. R. Steudel, Y. Steudel, Interaction of zinc oxide clusters with molecules related to the sulfur vulcanization of polyolefins (rubber). Chem. Eur. J. 12(33), 8589–8602 (2006). ISSN: 1521-3765

    CAS  Google Scholar 

  15. P. Ghosh et al., Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber Chem. Technol. 76(3), 592–693 (2003). ISSN: 0035-9475

    CAS  Google Scholar 

  16. L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd edn., Oxford Classic Texts in the Physical Sciences (Clarendon Press, Oxford, 2009)

    Google Scholar 

  17. J.S. Dick, Rubber Technology: Compounding and Testing for Performance (Hanser Gardner, Cincinnati, 2009). ISBN: 156990278X

    Google Scholar 

  18. B. Rodgers et al., Carbon Black (Marcel Dekker, New York, 2004)

    Google Scholar 

  19. M. Klüppel, A. Schröder, G. Heinrich, Carbon black, in Physical Properties of Polymers Handbook, ed. by M.E. James (Springer, New York, 2007). ISBN: 0387312358

    Google Scholar 

  20. M. Klüppel, G. Heinrich, Fractal structures in carbon black reinforced rubbers. Rubber Chem. Technol. 68, 623 (1995)

    Google Scholar 

  21. G.J. Schneider et al., Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites. J. Chem. Phys. 133, 094902 (2010)

    Google Scholar 

  22. A.I. Medalia, F.A. Heckman, Morphology of aggregates II. Size and shape factors of carbon black aggregates from electron microscopy. Carbon 7(5), 567–582 (1969)

    CAS  Google Scholar 

  23. T. Koga et al., New insight into hierarchical structures of carbon black dispersed in polymer matrices: a combined small-angle scattering study. Macromolecules 41(2), 453–464 (2008)

    CAS  Google Scholar 

  24. J. Hyeon-Lee et al., Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering. Langmuir 14(20), 5751–5756 (1998)

    CAS  Google Scholar 

  25. G.J. Schneider, D. Göritz, A novel model for the interpretation of small-angle scattering experiments of self-affine structures. J. Appl. Crystallogr. 43(1), 12–16 (2009). ISSN: 0021-8898

    Google Scholar 

  26. D.J. Kohls, G. Beaucage, Rational design of reinforced rubber. Curr. Opin. Solid State Mater. Sci. 6(3), 183–194 (2002). ISSN: 1359-0286

    CAS  Google Scholar 

  27. G.J. Schneider, Analyse der Struktur von aktiven Füllstoffen mittels Streumethoden. Ph.D. Thesis, Universität Regensburg (2006)

    Google Scholar 

  28. B.B. Mandelbrot, The Fractal Geometry of Nature (Times Books, New York, 1983)

    Google Scholar 

  29. M. Fleischmann, D.J. Tildesley, R.C. Ball, Fractals in the Natural Sciences: A Discussion (Princeton University Press, Princeton, 1990). ISBN: 0691085617

    Google Scholar 

  30. G. Huber, T.A. Vilgis, On the mechanism of hydrodynamic reinforcement in elastic composites. Macromolecules 35(24), 9204–9210 (2002)

    CAS  Google Scholar 

  31. H.D. Bale, P.W. Schmidt, Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties. Phys. Rev. Lett. 53(6), 596–599 (1984)

    CAS  Google Scholar 

  32. P.W. Schmidt, Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Crystallogr. 24(5), 414–435 (1991)

    CAS  Google Scholar 

  33. N. Stribeck, X-Ray Scattering of Soft Matter (Springer, Heidelberg, 2007)

    Google Scholar 

  34. J.E. Martin, Scattering exponents for polydisperse surface and mass fractals. J. Appl. Crystallogr. 19(1), 25–27 (1986). ISSN: 0021-8898

    CAS  Google Scholar 

  35. G. Beaucage et al., Morphology of polyethylene-carbon black composites. J. Polym. Sci. B Polym. Phys. 37(11), 1105–1119 (1999). ISSN: 1099-0488

    CAS  Google Scholar 

  36. R. Hjelm et al., The microstructure and morphology of carbon black: a study using small angle neutron scattering and contrast variation. J. Mater. Res. 9(12), 3210–3222 (1994)

    CAS  Google Scholar 

  37. W. Ruland, Apparent fractal dimensions obtained from small-angle scattering of carbon materials. Carbon 39(2), 323–324 (2001)

    CAS  Google Scholar 

  38. G. Heinrich, M. Klüppel, A hypothetical mechanism of carbon black formation based on molecular ballistic deposition. Kautschuk, Gummi, Kunststoffe 54(4), 159–165 (2001)

    CAS  Google Scholar 

  39. G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28(6), 717–728 (1995)

    CAS  Google Scholar 

  40. M. Klüppel, The role of disorder in filler reinforcement of elastomers on various length scales. Adv. Polym. Sci. 164, 1–86 (2003)

    Google Scholar 

  41. A. Schröder, M. Klüppel, R. Schuster, Characterisation of surface activity of carbon black and its relation to polymer-filler interaction. Macromol. Mater. Eng. 292(8), 885–916 (2007)

    Google Scholar 

  42. T.P. Rieker, S. Misono, F. Ehrburger-Dolle, Small-angle X-ray scattering from carbon blacks: crossover between the fractal and Porod regimes. Langmuir 15(4), 914–917 (1999)

    CAS  Google Scholar 

  43. T.P. Rieker, M. Hindermann-Bischoff, F. Ehrburger-Dolle, Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites. Langmuir 16(13), 5588–5592 (2000)

    CAS  Google Scholar 

  44. J. Fröhlich, S. Kreitmeier, D. Göritz, Surface characterization of carbon blacks. Kautsch. Gummi Kunstst. 51, 370–376 (1998)

    Google Scholar 

  45. C.R. Herd, G.C. McDonald, W.M. Hess, Morphology of carbon-black aggregates: fractal versus Euclidean geometry. Rubber Chem. Technol. 65, 107 (1992)

    CAS  Google Scholar 

  46. R. Botet, R. Jullien, Fractal aggregates of particles. Phase Trans. Multinat. J. 24(2), 691–736 (1990)

    Google Scholar 

  47. T.C. Gruber, T.W. Zerda, M. Gerspacher, 3D morphological characterization of carbon-black aggregates using transmission electron microscopy. Rubber Chem. Technol. 67(2), 280–287 (1994)

    CAS  Google Scholar 

  48. J. Feder, Fractals (Plenum Press, New York, 1988)

    Google Scholar 

  49. K.J. Falconer, Fractal Geometry (Wiley, New York, 1990)

    Google Scholar 

  50. G. Heinrich, M. Klüppel, T. Vilgis, Reinforcement theories, in Physical Properties Of Polymers Handbook, ed. by M.E. James (Springer, New York, 2007). ISBN: 0387312358

    Google Scholar 

  51. D.C. Edwards, Polymer-filler interactions in rubber reinforcement. J. Mater. Sci. 25(10), 4175–4185 (1990)

    CAS  Google Scholar 

  52. T.A. Vilgis, G. Heinrich, Disorder-induced enhancement of polymer adsorption—a model for the rubber-polymer interaction in filled rubbers. Macromolecules 27(26), 7846–7854 (1994)

    CAS  Google Scholar 

  53. A.R. Payne, Dynamic properties of heat-treated butyl vulcanizates. J. Appl. Polym. Sci. 7, 873–885 (1963)

    CAS  Google Scholar 

  54. S. Merabia, P. Sotta, D.R. Long, A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 41(21), 8252–8266 (2008)

    CAS  Google Scholar 

  55. S.D. Gehman, J.E. Field, X-ray structure of rubber-carbon black mixtures. Ind. Eng. Chem. 32(10), 1401–1407 (1940)

    CAS  Google Scholar 

  56. J. Domurath et al., Modelling of stress and strain amplification effects in filled polymer melts. J. Non-Newton. Fluid Mech. 171, 8–16 (2012)

    Google Scholar 

  57. L. Mullins, N.R. Tobin, Stress softening in rubber vulcanizates. I. Use of a strain-amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J. Appl. Polym. Sci 9, 2993 (1965)

    CAS  Google Scholar 

  58. A.I. Medalia, Morphology of aggregates: I. Calculation of shape and bulkiness factors; application to computer-simulated random flows. J. Colloid Interface Sci. 24(3), 393–404 (1967)

    CAS  Google Scholar 

  59. S. Westermann et al., Strain amplification effects in polymer networks. Physica B: Cond. Matter 234, 306–307 (1997). ISSN: 0921-4526

    Google Scholar 

  60. J. Rault et al., Stress-induced crystallization and reinforcement in filled natural rubbers: 2H NMR study. Macromolecules 39(24), 8356–8368 (2006)

    CAS  Google Scholar 

  61. G. Huber, T.A. Vilgis, Universal properties of filled rubbers: mechanisms for reinforcement on different length scales. Kautsch. Gummi Kunstst. 52(2), 102–107 (1999)

    CAS  Google Scholar 

  62. D.J. Lee, J.A. Donovan, Microstructural changes in the crack tip region of carbon-black-filled natural rubber. Rubber Chem. Technol. 60(5), 910–923 (1987)

    CAS  Google Scholar 

  63. J.A.C. Harwood, L. Mullins, A.R. Payne, Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers. J. Appl. Polym. Sci. 9(9), 3011–3021 (1965)

    CAS  Google Scholar 

  64. S. Dupres et al., Local deformation in carbon black-filled polyisoprene rubbers studied by NMR and X-ray diffraction. Macromolecules 42(7), 2634–2644 (2009)

    CAS  Google Scholar 

  65. S. Westermann et al., Matrix chain deformation in reinforced networks: a SANS approach. Macromolecules 32(18), 5793–5802 (1999). ISSN: 0024-9297

    Google Scholar 

  66. A. Botti et al., A microscopic look at the reinforcement of silica-filled rubbers. J. Chem. Phys. 124, 174908 (2006)

    CAS  Google Scholar 

  67. N. Jouault et al., Direct small-angle-neutron-scattering observation of stretched chain conformation in nanocomposites: more insight on polymer contributions in mechanical reinforcement. Phys. Rev. E 82(3), 31801 (2010). ISSN: 1063-651X

    Google Scholar 

  68. S. Trabelsi, P.A. Albouy, J. Rault, Effective local deformation in stretched filled rubber. Macromolecules 36(24), 9093–9099 (2003)

    CAS  Google Scholar 

  69. K. Brüning, K. Schneider, G. Heinrich, Deformation and orientation in filled rubbers on the nano- and microscale studied by X-ray scattering. J. Polym. Sci. B Polym. Phys. 50(24), 1728–1732 (2012)

    Google Scholar 

  70. T. Witten, M. Rubinstein, R. Colby, Reinforcement of rubber by fractal aggregates. J. Phys. II 3(3), 367–383 (1993)

    CAS  Google Scholar 

  71. J. Fröhlich, W. Niedermeier, H.-D. Luginsland, The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos. A Appl. Sci. Manuf. 36(4), 449–460 2005. ISSN: 1359-835X. doi:10.1016/j.compositesa.2004.10.004, http://www.sciencedirect.com/science/article/B6TWN-4F0854M-5/2/e872fc26f9297bbc0c83c9e362647db3

  72. T. Lanzl, Charakterisierung von Ruß-Kautschuk-Mischungen mittels dielektrischer Spektroskopie. Ph.D. Thesis, Universität Regensburg (2001)

    Google Scholar 

  73. V.M. Litvinov, P.A.M. Steeman, EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32(25), 8476–8490 (1999)

    CAS  Google Scholar 

  74. S. Wolff, M.J. Wang, E.H. Tan, Filler-elastomer interactions. Part VII. Study on bound rubber. Rubber Chem. Technol. 66(2), 163–177 (1993)

    CAS  Google Scholar 

  75. S. Kohjiya, A. Kato, Y. Ikeda, Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Progr. Polym. Sci. 33(10), 979–997 (2008)

    CAS  Google Scholar 

  76. S. Kohjiya et al., Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image. Polymer 47(10), 3298–3301 (2006)

    CAS  Google Scholar 

  77. M.-J. Wang, Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem. Technol. 71(3), 520–589 (1998)

    CAS  Google Scholar 

  78. J.T. Bauman, Fatigue, Stress, and Strain of Rubber Components: Guide for Design Engineers (Hanser, Cincinnati, 2008)

    Google Scholar 

  79. S. Toki et al., Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy. J. Polym. Sci. A Polym. Chem. 46(22), 2456–2464 (2008)

    CAS  Google Scholar 

  80. W.R. Krigbaum et al., Effect of strain on the thermodynamic melting temperature of polymers. J. Polym. Sci. A-2 Polym. Phys. 4(3), 475–489 (1966)

    CAS  Google Scholar 

  81. W.R. Krigbaum, R.J. Roe, Diffraction study of crystallite orientation in a stretched polychloroprene vulcanizate. J. Polym. Sci. A General Papers 2(10), 4391–4414 (1964)

    CAS  Google Scholar 

  82. M. Tsuji, T. Shimizu, S. Kohjiya, TEM studies on thin films of natural rubber and polychloroprene crystallized under molecular orientation II. Highly prestretched thin films. Polym. J. 32(6), 505–512 (2000)

    CAS  Google Scholar 

  83. M. Tsuji, T. Shimizu, S. Kohjiya, TEM studies on thin films of natural rubber and polychloroprene crystallized under molecular orientation. Polym. J. 31(9), 784–789 (1999)

    CAS  Google Scholar 

  84. S. Toki et al., Structural developments in synthetic rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. J. Polym. Sci. B Polym. Phys. 42(6), 956–964 (2004)

    CAS  Google Scholar 

  85. S. Toki et al., Strain-induced molecular orientation and crystallization in natural and synthetic rubbers under uniaxial deformation by in-situ synchrotron X-ray study. Rubber Chem. Technol. 77, 317 (2004)

    Google Scholar 

  86. G.R. Mitchell, A wide-angle X-ray study of the development of molecular orientation in crosslinked natural rubber. Polymer 25(11), 1562–1572 (1984)

    CAS  Google Scholar 

  87. M. Kroon, A constitutive model for strain-crystallising rubber-like materials. Mech. Mater. 42(9), 873–885 (2010). ISSN: 0167-6636. doi:10.1016/j.mechmat.2010.07.008, http://www.sciencedirect.com/science/article/pii/S0167663610000980

  88. W.V. Mars, A. Fatemi, A phenomenological model for the effect of R ratio on fatigue of strain crystallizing rubbers. Rubber Chem. Technol. 76(5), 1241–1258 (2003)

    CAS  Google Scholar 

  89. R.S. Stein, J. Powers, Topics in Polymer Physics (Imperial College Press, Singapore, 2006)

    Google Scholar 

  90. L.H. Sperling, Introduction to Physical Polymer Science (Wiley, New York, 1992)

    Google Scholar 

  91. G. Marckmann, E. Verron, Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)

    CAS  Google Scholar 

  92. L. Mullins, N.R. Tobin, Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Technol. 30(2), 555–571 (1957)

    Google Scholar 

  93. F. Bueche, Mullins effect and rubber-filler interaction. J. Appl. Polym. Sci. 5(15), 271–281 (1961)

    CAS  Google Scholar 

  94. G. Heinrich, M. Klüppel, Recent advances in the theory of filler networking in elastomers. Adv. Polym. Sci. 160(1), 1–44 (2002)

    CAS  Google Scholar 

  95. S. Richter et al., Jamming in filled polymer systems. Macromol. Symp. 291(1), 193–201 (2010). ISSN: 1521-3900

    Google Scholar 

  96. S.M. Cadwell et al., Dynamic fatigue life of rubber. Ind. Eng. Chem. Anal. Ed. 12(1), 19–23 (1940)

    CAS  Google Scholar 

  97. W.V. Mars, A. Fatemi, A literature survey on fatigue analysis approaches for rubber. Int. J. Fatigue 24(9), 949–961 (2002)

    CAS  Google Scholar 

  98. A. Andriyana, N. Saintier, E. Verron, Multiaxial fatigue life prediction of rubber using configurational mechanics and critical plane approaches: a comparative study, in Proceedings of the VI. European Conference on Constitutive Models for Rubber, vol. 5, ed. by P.E. Austrell, L. Kari (Balkema, Tokyo, 2008), p. 191

    Google Scholar 

  99. W.V. Mars, A. Fatemi, Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem. Technol. 77, 391–412 (2004)

    CAS  Google Scholar 

  100. W.V. Mars, A. Fatemi, Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading. J. Mater. Sci. 41(22), 7324–7332 (2006)

    CAS  Google Scholar 

  101. J.B. Le Cam et al., Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules 37(13), 5011–5017 (2004)

    Google Scholar 

  102. A.G. Thomas, The development of fracture mechanics for elastomers. Rubber Chem. Technol. 67(3), 50–67 (1994)

    Google Scholar 

  103. R.S. Rivlin, A.G. Thomas, Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10(3), 291–318 (1953)

    CAS  Google Scholar 

  104. W.V. Mars, A. Fatemi, Fatigue crack nucleation and growth in filled natural rubber. Fatigue Fract. Eng. Mater. Struct. 26(9), 779–789 (2003)

    CAS  Google Scholar 

  105. A.G. Thomas, Rupture of rubber. II. The strain concentration at an incision. J. Polym. Sci. 18(88), 177–188 (1955)

    CAS  Google Scholar 

  106. G. Andreini et al., Crack growth behavior of styrene-butadiene rubber, natural rubber, and polybutadiene rubber compounds: comparison of pure-shear versus strip tensile test. Rubber Chem. Technol. 86(1), 132–145 (2013)

    Google Scholar 

  107. J.B. Le Cam, E. Toussaint, The mechanism of fatigue crack growth in rubbers under severe loading: the effect of stress-induced crystallization. Macromolecules 43(10), 4708–4714 (2010)

    Google Scholar 

  108. J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Google Scholar 

  109. G. Cherepanov, Crack propagation in continuous media. J. Appl. Math. Mech. 31, 503–512 (1967)

    Google Scholar 

  110. N. Ait Hocine, M. Nait Abdelaziz, Fracture analysis of rubber-like materials using global and local approaches: initiation and propagation direction of a crack. Polym. Eng. Sci. 49(6), 1076–1088 (2009)

    CAS  Google Scholar 

  111. T. Horst, Spezifische Ansätze zur bruchmechanischen Charakterisierung von Elastomeren. Ph.D. Thesis, Universität Dresden (2010)

    Google Scholar 

  112. K.H. Schwalbe, Approximate calculation of fatigue crack growth. Int. J. Fract. 9(4), 381–395 (1973)

    Google Scholar 

  113. G. Andreini et al., Comparison of sine versus pulse waveform effects on fatigue crack growth behavior of NR, SBR, and BR compounds. Rubber Chem. Technol. 83(4), 391–403 (2010)

    CAS  Google Scholar 

  114. U.G. Eisele, S.A. Kelbch, A.J.M. Summer, Crack growth performance of tire compounds. Rubber World 212, 38–45 (1995)

    Google Scholar 

  115. R.J. Harbour, A. Fatemi, W.V. Mars, The effect of a dwell period on fatigue crack growth rates in filled SBR and NR. Rubber Chem. Technol. 80(5), 838–853 (2007)

    CAS  Google Scholar 

  116. E.H. Andrews, Crack propagation in a strain-crystallizing elastomer. J. Appl. Phys. 32(3), 542–548 (1961)

    CAS  Google Scholar 

  117. R.J. Harbour, A. Fatemi, W.V. Mars, Fatigue crack growth of filled rubber under constant and variable amplitude loading conditions. Fatigue Fract. Eng. Mater. Struct. 30(7), 640–652 (2007)

    CAS  Google Scholar 

  118. A.T. Zehnder, Fracture Mechanics (Springer, New York, 2012)

    Google Scholar 

  119. N. Saintier, G. Cailletaud, R. Piques, Cyclic loadings and crystallization of natural rubber: an explanation of fatigue crack propagation reinforcement under a positive loading ratio. Mater. Sci. Eng. A 528(3), 1078–1086 (2011). ISSN: 0921-5093. doi:10.1016/j.msea.2010.09.079, http://www.sciencedirect.com/science/article/pii/S0921509310011251

  120. W.F. Busse, Tear resistance and structure of rubber. Ind. Eng. Chem. 26(11), 1194–1199 (1934)

    CAS  Google Scholar 

  121. W.V. Mars, Computed dependence of rubber’s fatigue behavior on strain crystallization. Rubber Chem. Technol. 82, 51–61 (2009)

    CAS  Google Scholar 

  122. N. Andre, G. Cailletaud, R. Piques, Haigh diagram for fatigue crack initiation prediction of natural rubber components. Kautsch. Gummi Kunstst. 52(2), 120–123 (1999)

    CAS  Google Scholar 

  123. H.W. Greensmith, Rupture of rubber. IV. Tear properties of vulcanizates containing carbon black. J. Polym. Sci. 21(98), 175–187 (1956)

    Google Scholar 

  124. K. Sakulkaew, A.G. Thomas, J.J.C. Busfield, The effect of the rate of strain on tearing in rubber. Polym. Testing 30(2), 163–172 (2011)

    CAS  Google Scholar 

  125. B. Gabrielle et al., Tear rotation in reinforced natural rubber, in Proceedings of the VII. European Conference on Constitutive Models for Rubber (2011), pp. 221–225

    Google Scholar 

  126. B. Gabrielle et al., Effect of tear rotation on ultimate strength in reinforced natural rubber. Macromolecules 44(17), 7006–7015 (2011)

    CAS  Google Scholar 

  127. J.B. Brunac, O. Gérardin, J.B. Leblond, On the heuristic extension of Haigh’s diagram for the fatigue of elastomers to arbitrary loadings. Int. J. Fatigue 31(5), 859–867 (2009)

    CAS  Google Scholar 

  128. W.V. Mars, A. Fatemi, Multiaxial fatigue of rubber: Part I: Equivalence criteria and theoretical aspects. Fatigue Fract. Eng. Mater. Struct. 28(6), 515–522 (2005)

    CAS  Google Scholar 

  129. W.V. Mars, A. Fatemi, Multiaxial stress effects on fatigue behavior of filled natural rubber. Int. J. Fatigue 28(5-6), 521–529 (2006)

    CAS  Google Scholar 

  130. S.V. Hainsworth, An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers. Polym. Testing 26(1), 60–70 (2007)

    CAS  Google Scholar 

  131. D.K. Setua, S.K. De, Scanning electron microscopy studies on mechanism of tear fracture of styrene-butadiene rubber. J. Mater. Sci. 18(3), 847–852 (1983)

    CAS  Google Scholar 

  132. K. Legorju-Jago, C. Bathias, Fatigue initiation and propagation in natural and synthetic rubbers. Int. J. Fatigue 24(2-4), 85–92 (2002)

    CAS  Google Scholar 

  133. D.G. Young, Dynamic property and fatigue crack propagation research on tire sidewall and model compounds. Rubber Chem. Technol. 58(4), 785–805 (1985)

    CAS  Google Scholar 

  134. DESY website, http://photon-science.desy.de/facilities/petra_iii/index_eng.html. Accessed 16 May 2013

  135. Lecture Notes "Physik mit Synchrotronstrahlung", given by Prof. C. Schroer, TU Dresden (2011)

    Google Scholar 

  136. A. Guinier et al., Small-Angle Scattering of X-Rays (Wiley, New York, 1955)

    Google Scholar 

  137. L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, 1987)

    Google Scholar 

  138. O. Glatter, O. Kratky, Small Angle X-Ray Scattering (Academic Press, London, 1982)

    Google Scholar 

  139. P. Lindner, T. Zemb, Neutrons, X-Rays, and Light: Scattering Methods Applied to Soft Condensed Matter (Elsevier North-Holland, Boston, 2002)

    Google Scholar 

  140. B.J. Berne, R. Pecora, Dynamic Light Scattering, with Applications to Chemistry, Biology, and Physics (Dover, New York, 2000)

    Google Scholar 

  141. C.G. Vonk, G. Kortleve, X-ray small-angle scattering of bulk polyethylene. Colloid Polym. Sci. 220(1), 19–24 (1967)

    CAS  Google Scholar 

  142. G. Beaucage, H.K. Kammler, S.E. Pratsinis, Particle size distributions from small-angle scattering using global scattering functions. J. Appl. Crystallogr. 37(4), 523–535 (2004)

    CAS  Google Scholar 

  143. J. Fröhlich, Analyse der räumlichen Struktur und der Oberfläche von aktiven Füllstoffen mittels Streumethoden. Ph.D. Thesis, Universität Regensburg (1998)

    Google Scholar 

  144. H. Zhang et al., Nanocavitation in carbon black filled styrene-butadiene rubber under tension detected by real time small angle X-ray scattering. Macromolecules 45(3), 1529–1543 (2012)

    CAS  Google Scholar 

  145. A. Jánosi, Röntgenkleinwinkelstreuung von Mehrphasensystemen, interpretation der Elektronendichtefluktuation: II. Dreiphasensysteme. Monatsh. Chem. Chem. Mon. 114(4), 383–387 (1983)

    Google Scholar 

  146. P.P. Ewald, Introduction to the dynamical theory of X-ray diffraction. Acta Crystallogr. A Cryst. Phys. Diffr. Theor. General Crystallogr. 25(1), 103–108 (1969)

    Google Scholar 

  147. W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A 88(605), 428–438 (1913)

    CAS  Google Scholar 

  148. L.E. Alexander, X-Ray Diffraction Methods in Polymer Science (Wiley-Interscience, New York, 1969)

    Google Scholar 

  149. G.K. Elyashevich, Thermodynamic and kinetics of orientational crystallization of flexible-chain polymers. Adv. Polym. Sci. 43, 205–245 (1982). ISSN: 0065-3195

    Google Scholar 

  150. S. Rabiej, A comparison of two X-ray diffraction procedures for crystallinity determination. Eur. Polym. J. 27(9), 947–954 (1991)

    CAS  Google Scholar 

  151. M. Tosaka et al., Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 37(9), 3299–3309 (2004)

    CAS  Google Scholar 

  152. J.M. Goppel, On the degree of crystallinity in natural rubber. Appl. Sci. Res. 1(1), 3–17 (1949)

    Google Scholar 

  153. S.C. Nyburg, X-ray determination of crystallinity in deformed natural rubber. Br. J. Appl. Phys. 5, 321–324 (1954)

    CAS  Google Scholar 

  154. R. Oono, K. Miyasaka, K. Ishikawa, Crystallization kinetics of biaxially stretched natural rubber. J. Polym. Sci. Polym. Phys. Ed. 11(8), 1477–1488 (1973)

    CAS  Google Scholar 

  155. P. Bansal et al., Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour. Technol. 101(12), 4461–4471 (2010)

    Google Scholar 

  156. J.R. Katz, Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 13(19), 410–416 (1925)

    Google Scholar 

  157. C.W. Bunn, Molecular structure and rubber-like elasticity. I. The crystal structures of gutta-percha, rubber and polychloroprene. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 180(980), 40 (1942)

    CAS  Google Scholar 

  158. A. Immirzi et al., Crystal structure and melting entropy of natural rubber. Macromolecules 38(4), 1223–1231 (2005)

    CAS  Google Scholar 

  159. Y. Takahashi, T. Kumano, Crystal structure of natural rubber. Macromolecules 37(13), 4860–4864 (2004)

    CAS  Google Scholar 

  160. S.C. Nyburg, A statistical structure for crystalline rubber. Acta Crystallogr. A 7(5), 385–392 (1954)

    CAS  Google Scholar 

  161. G. Natta, P. Corradini, über die Kristallstrukturen des 1,4-cis-polybutadiens und des 1,4-cis-polyisoprens. Angew. Chem. 68(19), 615–616 (1956)

    CAS  Google Scholar 

  162. W. Yau, R.S. Stein, Optical studies of the stress-induced crystallization of rubber. J. Polym. Sci. A-2 Polym. Phys. 6(1), 1–30 (1968)

    CAS  Google Scholar 

  163. L.A. Wood, N. Bekkedahl, Crystallization of unvulcanized rubber at different temperatures. J. Appl. Phys. 17, 362 (1946)

    CAS  Google Scholar 

  164. E.N. Dalal, K.D. Taylor, P.J. Phillips, The equilibrium melting temperature of cis-polyisoprene. Polymer 24(12), 1623–1630 (1983)

    CAS  Google Scholar 

  165. B. Huneau, Strain-induced crystallization of natural rubber: a review of X-ray diffraction investigations. Rubber Chem. Technol. 84(3), 425–452 (2011). doi:10.5254/1.3601131. http://link.aip.org/link/RCT/84/425/1

  166. E.H. Andrews, Spherulite morphology in thin films of natural rubber. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 270(1341), 232–241 (1962)

    CAS  Google Scholar 

  167. E.H. Andrews, Crystalline morphology in thin films of natural rubber. II. Crystallization under strain. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci 277(1371), 562–570 (1964)

    CAS  Google Scholar 

  168. S. Kawahara et al., Crystal nucleation and growth of natural rubber purified by deproteinization and trans-esterification. Polym. J. 36(5), 361–367 (2004)

    CAS  Google Scholar 

  169. D. Luch, G.S.Y. Yeh, Morphology of strain-induced crystallization of natural rubber. Part II. X-ray studies on cross-linked vulcanizates. J. Macromol. Sci. B 7(1), 121–155 (1973)

    CAS  Google Scholar 

  170. L. Mandelkern, Crystallization of Polymers Volume 1: Equilibrium Concepts (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  171. E.H. Andrews, P.J. Owen, A. Singh, Microkinetics of lamellar crystallization in a long chain polymer. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 324(1556), 79–97 (1971)

    CAS  Google Scholar 

  172. G.S.Y. Yeh, Strain-induced crystallization II. Subsequent fibrillar-to-lamellar transformation. Polym. Eng. Sci. 16(3), 145–151 (1976)

    CAS  Google Scholar 

  173. G.S.Y. Yeh, Morphology of strain-induced crystallization of polymers. Part I. Rubber Chem. Technol. 50, 863–873 (1977)

    CAS  Google Scholar 

  174. T. Shimizu et al., TEM observation of natural rubber thin films crystallized under molecular orientation. Rubber Chem. Technol. 73(5), 926–936 (2000)

    CAS  Google Scholar 

  175. J.H. Magill, Crystallization and morphology of rubber. Rubber Chem. Technol. 68, 507–539 (1995)

    CAS  Google Scholar 

  176. W.F. Reichert, M.K. Hopfenmüller, D. Göritz, Volume change and gas transport at uniaxial deformation of filled natural rubber. J. Mater. Sci. 22(10), 3470–3476 (1987)

    CAS  Google Scholar 

  177. S.R. Ryu, J.W. Sung, D.J. Lee, Strain-induced crystallization and mechanical properties of NBR composites with carbon nanotube and carbon black. Rubber Chem. Technol. 85(2), 207–218 (2012)

    CAS  Google Scholar 

  178. S. Trabelsi, P.A. Albouy, J. Rault, Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 36(20), 7624–7639 (2003)

    CAS  Google Scholar 

  179. M.F. Acken, W.E. Singer, W. Davey, X-ray study of rubber structure. Ind. Eng. Chem. 24(1), 54–57 (1932)

    CAS  Google Scholar 

  180. H. Hiratsuka et al., Measurement of orientation crystallization rates of linear polymers by means of dynamic X-ray diffraction technique. II. Frequency dispersion of strain-induced crystallization coefficient of natural rubber vulcanizates in subsonic range. J. Macromol. Sci. B 8(1-2), 101–126 (1973). doi:10.1080/00222347308245796. eprint: http://www.tandfonline.com/doi/pdf/10.1080/00222347308245796, http://www.tandfonline.com/doi/abs/10.1080/00222347308245796

  181. H. Kawai, Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials. Rheol. Acta 14(1), 27–47 (1975). ISSN: 0035-4511, http://dx.doi.org/10.1007/BF01527209

  182. N. Candau et al., Characteristic time of strain induced crystallization of crosslinked natural rubber. Polymer 53(13), 2540–2543 (2012)

    CAS  Google Scholar 

  183. I. Temizer, P. Wriggers, T.J.R. Hughes, Contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 200(9), 1100–1112 (2011)

    Google Scholar 

  184. D.J. Dunning, P.J. Pennells, Effect of strain on rate of crystallization of natural rubber. Rubber Chem. Technol. 40, 1381 (1967)

    CAS  Google Scholar 

  185. J.C. Mitchell, D.J. Meier, Rapid stress-induced crystallization in natural rubber. J. Polym. Sci. A-2 Polym. Phys. 6(10), 1689–1703 (1968)

    CAS  Google Scholar 

  186. M. Tosaka et al., Crystallization and stress relaxation in highly stretched samples of natural rubber and its synthetic analogue. Macromolecules 39(15), 5100–5105 (2006)

    CAS  Google Scholar 

  187. M. Tosaka et al., Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene. Polymer 53(3), 864–872 (2012)

    CAS  Google Scholar 

  188. L. Mandelkern, Crystallization of Polymers Volume 2: Kinetics and Mechanisms (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  189. P.G. De Gennes, Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60(12), 5030–5042 (1974)

    Google Scholar 

  190. R.H. Somani et al., Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46(20), 8587–8623 (2005)

    CAS  Google Scholar 

  191. J.F. Sanders, J.D. Ferry, R.H. Valentine, Viscoelastic properties of 1,2- polybutadiene: comparison with natural rubber and other elastomers. J. Polym. Sci. A-2 Polym. Phys. 6(5), 967–980 (1968)

    CAS  Google Scholar 

  192. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)

    Google Scholar 

  193. L. Mandelkern, Crystallization kinetics of homopolymers: overall crystallization: a review. Biophys. Chem. 112(2–3), 109–116 (2004)

    CAS  Google Scholar 

  194. C. Fond, Cavitation criterion for rubber materials: a review of void-growth models. J. Polym. Sci. B Polym. Phys. 39(17), 2081–2096 (2001)

    CAS  Google Scholar 

  195. A. Dorfmann, K.N.G. Fuller, R.W. Ogden, Shear, compressive and dilatational response of rubberlike solids subject to cavitation damage. Int. J. Solids Struct. 39(7), 1845–1861 (2002)

    Google Scholar 

  196. A.N. Gent, P.B. Lindley, Tension flaws in bonded cylinders of soft rubber. Rubber Chem. Technol. 31(2), 393–394 (1958)

    Google Scholar 

  197. P. Adriaensens et al., Relationships between microvoid heterogeneity and physical properties in cross-linked elastomers: an NMR imaging study. Macromolecules 33(19), 7116–7121 (2000)

    CAS  Google Scholar 

  198. J.B. Le Cam, A review of volume changes in rubbers: the effect of stretching. Rubber Chem. Technol. 83, 247 (2010)

    Google Scholar 

  199. A.N. Gent, Cavitation in rubber: a cautionary tale. Rubber Chem. Technol. 63(3), 49–53 (1990)

    Google Scholar 

  200. R. Christensen, C. Hoeve, Theoretical and experimental values of the volume changes accompanying rubber extension. Rubber Chem. Technol. 43, 1473–1481 (1970)

    Google Scholar 

  201. R.W. Penn, Volume changes accompanying the extension of rubber. J. Rheol. 14, 509–517 (1970)

    Google Scholar 

  202. T. Shinomura, M. Takahashi, Volume change measurements of filled rubber vulcanizates under stretching. Rubber Chem. Technol. 43, 1025–1035 (1970)

    CAS  Google Scholar 

  203. R. Shuttleworth, Volume change measurements in the study of rubber-filler interactions. Eur. Polym. J. 4(1), 31–38 (1968)

    CAS  Google Scholar 

  204. S. Kaneko, J.E. Frederick, D. McIntyre, Void formation in a filled SBR rubber determined by small-angle X-ray scattering. J. Appl. Polym. Sci. 26(12), 4175–4192 (1981)

    CAS  Google Scholar 

  205. J. Ramier et al., In situ SALS and volume variation measurements during deformation of treated silica filled SBR. J. Mater. Sci. 42(19), 8130–8138 (2007)

    CAS  Google Scholar 

  206. K. Layouni, L. Laiarinandrasana, R. Piques, Compressibility induced by damage in carbon black reinforced natural rubber, in Proceedings of the III. European Conference on Constitutive Models for Rubber, ed. by J.C.C. Busfield, A.H. Muhr (Taylor & Francis, London, 2003), p. 273

    Google Scholar 

  207. J.B. Le Cam, E. Toussaint, Cyclic volume changes in rubber. Mech. Mater. 41(7), 898–901 (2009)

    Google Scholar 

  208. J.B. Le Cam, E. Toussaint, Volume variation in stretched natural rubber: competition between cavitation and stress-induced crystallization. Macromolecules 41(20), 7579–7583 (2008)

    Google Scholar 

  209. T. Shinomura, M. Takahashi, Morphological study on carbon black loaded rubber vulcanizate under stretching. Rubber Chem. Technol. 43, 1015–1024 (1970)

    CAS  Google Scholar 

  210. E. Bayraktar et al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatigue Fract. Eng. Mater. Struct. 31(2), 184–196 (2008)

    Google Scholar 

  211. P.A. Kakavas, W.V. Chang, Acoustic emission in bonded elastomer discs subjected to compression. J. Appl. Polym. Sci. 45(5), 865–869 (1992)

    CAS  Google Scholar 

  212. J.C. Goebel, A.V. Tobolsky, Volume change accompanying rubber extension. Macromolecules 4(2), 208–209 (1971)

    Google Scholar 

  213. J.M. Chenal et al., Parameters governing strain induced crystallization in filled natural rubber. Polymer 48(23), 6893–6901 (2007)

    CAS  Google Scholar 

  214. A.N. Gent, B. Park, Failure processes in elastomers at or near a rigid spherical inclusion. J. Mater. Sci. 19(6), 1947–1956 (1984)

    CAS  Google Scholar 

  215. A.N. Gent, P.B. Lindley, Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 249(1257), 195–205 (1959)

    Google Scholar 

  216. K. Cho, A.N. Gent, Cavitation in model elastomeric composites. J. Mater. Sci. 23(1), 141–144 (1988)

    CAS  Google Scholar 

  217. A.N. Gent, D.A. Tompkins, Nucleation and growth of gas bubbles in elastomers. J. Appl. Phys. 40, 2520 (1969)

    CAS  Google Scholar 

  218. P. Kumar et al., Volume changes under strain resulting from the incorporation of rubber granulates into a rubber matrix. J. Polym. Sci. B Polym. Phys. 45(23), 3169–3180 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Brüning .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brüning, K. (2014). Introduction. In: In-situ Structure Characterization of Elastomers during Deformation and Fracture. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06907-4_1

Download citation

Publish with us

Policies and ethics