Skip to main content

HEVC Transform and Quantization

  • Chapter
  • First Online:
High Efficiency Video Coding (HEVC)

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

This chapter provides an overview of the transform and quantization design in HEVC. HEVC specifies two-dimensional transforms of various sizes from 4 × 4 to 32 × 32 that are finite precision approximations to the discrete cosine transform (DCT). In addition, HEVC also specifies an alternate 4 × 4 integer transform based on the discrete sine transform (DST) for use with 4 × 4 luma Intra prediction residual blocks. During the transform design, special care was taken to allow implementation friendliness, including limited bit depth, preservation of symmetry properties, embedded structure and basis vectors having almost equal norm. The HEVC quantizer design is similar to that of H.264/AVC where a quantization parameter (QP) in the range of 0–51 (for 8-bit video sequences) is mapped to a quantizer step size that doubles each time the QP value increases by 6. A key difference, however, is that the transform basis norm correction factors incorporated into the descaling matrices of H.264/AVC are no longer needed in HEVC simplifying the quantizer design. A QP value can be transmitted (in the form of delta QP) for a quantization group as small as 8 × 8 samples for rate control and perceptual quantization purposes. The QP predictor used for calculating the delta QP uses a combination of left, above and previous QP values. HEVC also supports frequency-dependent quantization by using quantization matrices for all transform block sizes. This chapter also provides an overview of the three special coding modes in HEVC (I_PCM mode, lossless mode, and transform skip mode) that modify the transform and quantization process by either skipping the transform or by skipping both transform and quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in the final HEVC specification [16], a clipping operation is introduced after the first inverse transform stage, mainly to allow for random quantization that could be used to create “evil” bitstreams used for stress testing video decoders. With the clipping introduced, the modification to the inverse transform scale factors is not necessary but has been retained in the HEVC specification and Test Model software for maturity reasons.

References

  1. Alshina E, Alshin A, Lee W, Park J (2011) Full factorization core transforms for HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G737, Geneva, Nov. 2011.

    Google Scholar 

  2. Bjntegaard G (2001) VCEG-M33: calculation of average PSNR differences between RD curves, ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001.

    Google Scholar 

  3. Bossen F (2011) On software complexity, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G757, Geneva, Nov. 2011.

    Google Scholar 

  4. Bossen F (2012) Common HM test conditions and software reference configurations, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-K1100, Shanghai, Oct. 2012.

    Google Scholar 

  5. Budagavi M (2011) IDCT pruning, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E386, Geneva, Mar. 2011

    Google Scholar 

  6. Budagavi M, Fuldseth A, Bjntegaard G, Sze V, Sadafale M (2013) Core transform design in the High Efficiency Video Coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 7(6):1029--1041

    Google Scholar 

  7. Chen W-H, Smith CH, Fralick S (1977) A fast computational algorithm for the discrete cosine transform. IEEE Trans Commun COM-25(9):1004--1009

    Google Scholar 

  8. Chono K, Aoki H, Wahadaniah V, Lim CS (2011) Proposal of enhanced PCM coding in HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E192, Geneva, Mar. 2011

    Google Scholar 

  9. Dai W, Krishnan M, Topiwala J, Topiwala P, Alshina E (2011) Lossless core transforms for HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G266, Geneva, Nov. 2011

    Google Scholar 

  10. Fuldseth A, Bjntegaard G, Sadafale M, Budagavi M (2011) Core transform design for HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G495, Geneva, Nov. 2011

    Google Scholar 

  11. Fuldseth A, Endresen LP, Selnes S, Arbatov V, Franchetti F, Puschel M (2011) SIMD Optimization of proposed HEVC transforms, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G497, Geneva, Nov. 2011

    Google Scholar 

  12. Haque M, Tabatabai A, Morigami Y (2011) HVS model based default quantization matrices, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G880, Geneva, Nov. 2011

    Google Scholar 

  13. HEVC Test Model HM-9.0.1 Nov. 2012 [Online]. Available https://hevc.hhi.fraunhofer. de/svn/svn_HEVCSoftware/tags/HM-9.0.1/

    Google Scholar 

  14. Hung C-Y, Landman P (1997) Compact inverse discrete cosine transform circuit for MPEG video decoding. In: Proceedings of IEEE SIPS, Nov. 1997, pp 364–373

    Google Scholar 

  15. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding

    Google Scholar 

  16. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding

    Google Scholar 

  17. Joshi R, Sole J, Karczewicz M (2011) Scaled integer transform supporting recursive factorization structure, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G579, Geneva, Nov. 2011

    Google Scholar 

  18. Kerofsky L, Riabtsev S (2012) Dynamic range analysis of HEVC/H.265 inverse transform operations, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-L0332, Geneva, Jan. 2013

    Google Scholar 

  19. Lan C, Xu J, Sullivan GJ, Wu F (2012) Intra transform skipping, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0408, Geneva, Apr. 2012

    Google Scholar 

  20. Malvar HS, Hallapuro A, Karczewicz M, Kerofsky L (2003) Low complexity transform and quantization in H.264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):598--603

    Google Scholar 

  21. Nakamura H, Nishitani M, Fukushima S (2012) Non-CE4: compatible QP prediction with RC and AQ, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0204, San Jose, Feb. 2012

    Google Scholar 

  22. Rao KR, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications. Academic, Boston

    Google Scholar 

  23. Sadafale M, Budagavi M (2010) Low-complexity configurable transform architecture for HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C226, Guangzhou, Oct. 2010

    Google Scholar 

  24. Saxena A, Fernandes FC (2011) CE7: mode-dependent DCT/DST without 4 × 4 full matrix multiplication for intra prediction, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E125, Geneva, Mar. 2011

    Google Scholar 

  25. Saxena A, Fernandes FC (2013) DCT/DST-based transform coding for intra prediction in image/video coding. IEEE Trans Image Proc 22(10):3974–3981

    Google Scholar 

  26. Tikekar M, Huang C-T, Juvekar C, Chandrakasan A (2011) Core transform property for practical throughput hardware design. Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G265, Geneva, Nov. 2011

    Google Scholar 

  27. Wiegand T, Sullivan GJ, Bjntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560--570

    Google Scholar 

  28. Wiegand T, Han W-J, Ohm J-R, Sullivan GJ (2010) High Efficiency Video Coding (HEVC) text specification working draft 1, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C403, Guangzhou, Oct. 2010

    Google Scholar 

  29. Winken M, Helle P, Marpe D, Schwarz H, Wiegand T (2011) Transform coding in the HEVC Test Model. In: Proceedings of the IEEE international conference image processing, pp 3693--3696

    Google Scholar 

  30. Zhou M, Sze V (2010) TE 12: evaluation of transform unit (TU) size, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C056, Guangzhou, Oct. 2010

    Google Scholar 

  31. Zhou M, Gao W, Jiang M, Yu H (2012) HEVC lossless coding and improvements. IEEE Trans Circuits Syst Video Technol 22(12):1839--1843

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhukar Budagavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Budagavi, M., Fuldseth, A., Bjøntegaard, G. (2014). HEVC Transform and Quantization. In: Sze, V., Budagavi, M., Sullivan, G. (eds) High Efficiency Video Coding (HEVC). Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-06895-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06895-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06894-7

  • Online ISBN: 978-3-319-06895-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics