Skip to main content

Insects and the Ecological Basis for Mathematical Modelling

  • Chapter
  • First Online:
Ecological Modelling Applied to Entomology

Part of the book series: Entomology in Focus ((ENFO,volume 1))

Abstract

This book brings together nine chapters that aim to present the most recent research on the interface between ecological modelling and entomology. The chapters are summaries of research performed in different Brazilian institutions, UK and Ireland universities. The idea of the book is to present different focuses of study by aggregating theoretical ecology and applications in agricultural and medical entomology, also emphasising pest management and conservation. This chapter briefly summarises a history of the population theory applied to entomology and will introduce the reader to the topics developed in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammunet T, Klemola T, Saikkonen K (2011) Impact of host plant quality on geometrid moth expansion on environmental and local population scales. Ecography 34:848–855

    Article  Google Scholar 

  • Andrew NR, Hughes L (2007) Potential host colonization by insect herbivores in a warmer climate: a transplant experiment. Glob Change Biol 13:1539–1549

    Article  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  PubMed  CAS  Google Scholar 

  • Bascompte J, Sole RV (1998) Spatiotemporal patterns in nature. Trends Ecol Evol 13:173–174

    Article  PubMed  CAS  Google Scholar 

  • Bentley JW, Robson M, Sibale BB et al (2012) Travelling companions: emerging diseases of people, animals and plants along the Malawi-Mozambique border. Hum Ecol 40:557–569

    Article  Google Scholar 

  • Bommarco R, Firle SO, Ekbom B (2007) Outbreak suppression by predators depends on spatial distribution of prey. Ecol Model 201:163–170

    Article  Google Scholar 

  • Carey JR (1993) Applied demography for biologists: with special emphasis on insects. Oxford University Press, New York

    Google Scholar 

  • Carpenter FM (1953) The geological history and evolution of insects. Am Sci 41:256–270. Annu Rev Entomol 47:817–844

    Google Scholar 

  • Carvalho RA, Omoto C, Field LM et al (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. Plos One 8:e62268. doi:10.1371/journal.pone.0062268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    Article  PubMed  CAS  Google Scholar 

  • Coutinho RM, Godoy WAC, Kraenkel RA (2012) Integrodifference model for blowfly invasion. Theor Ecol 5:363–371

    Article  Google Scholar 

  • Cushing JM, Costantino RF, Dennis B et al (2003) Chaos in ecology: experimental nonlinear dynamics. Academic, San Diego

    Google Scholar 

  • Davis MA, Thompson K, Grime JP (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704

    Article  Google Scholar 

  • Dennis BR, Desharnais A, Cushing JM et al (1995) Nonlinear demographic dynamics: mathematical models, statistical methods and biological experiments. Ecol Monogr 65:261–281

    Article  Google Scholar 

  • Edelstein-Keshet L (1978) Mathematical models in biology. Princeton University Press, Princeton

    Google Scholar 

  • Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect interface. Curr Opin Plant Biol 11:457–463

    Article  PubMed  CAS  Google Scholar 

  • Ferron P, Deguine JP (2005) Crop protection, biological control, habitat management and integrated farming, a review. Agron Sustain Dev 25:17–24

    Article  Google Scholar 

  • Fresia P, Azeredo-Espin AML, Lyra ML (2013) The phylogeographic history of the new world screwworm fly, inferred by approximate Bayesian computation analysis. Plos One 8:e76168. doi:10.1371/journal.pone.0076168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100

    Article  PubMed  CAS  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–585

    Article  Google Scholar 

  • Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287:17–21

    Article  Google Scholar 

  • Harrison JF, Kaiser A, VandenBrooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B 277:1937–1946

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassel MP (1978) The dynamics of arthropod predator-prey systems, Monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Hassell MP, Lawton JH, May RM (1976) Patterns of dynamical behaviour in single species populations. J Anim Ecol 45:471–486

    Article  Google Scholar 

  • Hu SJ, Ning T, Fu DY et al (2013) Dispersal of the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae), in mainland China as inferred from molecular data and associations to indices of human activity. Plos One 8:e57568. doi:10.371/journal.pone.0057568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Ives AR, Schellhorn NA (2011) Novel pests and technologies: risk assessment in agroecosystems using simple models in the face of uncertainties. Curr Opin Environ Sustain 3:100–104

    Article  Google Scholar 

  • Jones RE (2001) Mechanisms for locating resources in space and time: impacts on the abundance of insect herbivores. Austral Ecol 26:518–524

    Article  Google Scholar 

  • Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Article  Google Scholar 

  • Kogan M, Jepson P (2007) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kos M, van Loon JJ, Dicke M et al (2009) Transgenic plants as vital components of integrated pest management. Trends Biotechnol 27:621–627

    Article  PubMed  CAS  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  PubMed  CAS  Google Scholar 

  • Lima EABF, Ferreira CP, Godoy WAC (2009) Ecological modeling and pest population management: a possible and necessary connection in a changing world. Neotrop Entomol 38:699–707

    Article  PubMed  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams & Williams Company, Baltimore

    Google Scholar 

  • Matthews RW, Matthews JR (1978) Insect behaviour. Wiley, New York

    Google Scholar 

  • Mazzi D, Dorn S (2012) Movement of insect pests in agricultural landscapes. Ann Appl Biol 160:97–113

    Article  Google Scholar 

  • Moretti AC, Coutinho RM, Moral RA et al (2013) Quantitative and qualitative dynamics of exotic and native blowflies (Diptera: Calliphoridae) with migrations among municipalities. Community Ecol 14:249–257

    Article  Google Scholar 

  • Murray JD (2001) Mathematical biology, an introduction. Springer, New York

    Google Scholar 

  • Nicholson AJ (1933) The balance of animal populations. J Anim Ecol 2:131–178

    Article  Google Scholar 

  • Nicholson AJ (1954) An outline of the dynamics of animal populations. Aust J Zool 2:9–65

    Article  Google Scholar 

  • Nicholson AJ (1957) The self adjustment of populations to change. Cold Spring Harb Symp Quant Biol 22:153–173

    Article  Google Scholar 

  • Nicholson AJ, Bailey VA (1935) The balance of animal populations. Part 1. Proc Zool Soc London 3:551–598

    Article  Google Scholar 

  • Parnés A, Lagan KM (2007) Larval therapy in wound management: a review. Int J Clin Pract 61:488–493

    Article  PubMed  Google Scholar 

  • Perveen F (2012) Insecticides, advances in integrated pest management. InTech, Rijeka

    Book  Google Scholar 

  • Pianka ER (1970) On r and K selection. Am Nat 104:592–597

    Article  Google Scholar 

  • Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123–155

    Article  Google Scholar 

  • Prout T, McChesney F (1985) Competition among immatures affects their adult fertility: population dynamics. Am Nat 126:521–558

    Article  Google Scholar 

  • Qiu J (2010) GM crop use makes minor pests major problem. Nature. doi:10.1038/news.2010.242

  • Rosenheim JA (2011) Stochasticity in reproductive opportunity and the evolution of egg limitation in insects. Evolution 65:2300–2312

    Article  PubMed  Google Scholar 

  • Serra H, Silva ICR, Mancera PFA et al (2007) Stochastic dynamics in exotic and native blowflies: an analysis combining laboratory experiments and a two-patch metapopulation model. Ecol Res 22:686–695

    Article  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Speight MR, Hunter MD, Watt AD (2008) Ecology of insects: concepts and applications. Wiley-Blackwell, Oxford

    Google Scholar 

  • Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  PubMed  CAS  Google Scholar 

  • Thacker JRM (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge

    Google Scholar 

  • Thompson WR (1924) La theory mathematique de l’action des parasites entomophages et le facteur du hassard. Annales Faculte des Sciences de Marseille 2:69–89

    Google Scholar 

  • van Huis A (2012) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563–583

    Article  PubMed  Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique 10:113–121

    Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Wells JD, Stevens R (2008) Application of DNA-based methods in forensic entomology. Annu Rev Entomol 53:103–120

    Article  PubMed  CAS  Google Scholar 

  • WHO (2011a) Global health observatory. Available at: http://apps.who.int/ghodata/?vid=110001

  • WHO (2011b) Malaria fact sheet. Available at: http://www.who.int/mediacentre/factsheets/fs094/en/

  • Yates G, Boyce MS (2012) Dispersal, animal. In: Hastings A, Gross LJ (eds) Encyclopedia of theoretical ecology. University of California Press, Berkeley

    Google Scholar 

  • Zaim M, Guillet R (2002) Alternative insecticides: an urgent need. Trends Parasitol 18:161–163

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley A. C. Godoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, C.P., Godoy, W.A.C. (2014). Insects and the Ecological Basis for Mathematical Modelling. In: Ferreira, C., Godoy, W. (eds) Ecological Modelling Applied to Entomology. Entomology in Focus, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-06877-0_1

Download citation

Publish with us

Policies and ethics