Skip to main content

Quantitative Stratigraphy, Splining and Geologic Time Scales

  • Chapter
  • First Online:
Geomathematics: Theoretical Foundations, Applications and Future Developments

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 18))

  • 1881 Accesses

Abstract

Quantitative stratigraphy uses logical and mathematical tools to help define the stratigraphic framework of the Earth’s crust. Biostratigraphy uses observations on fossil taxa. Biostratigraphic events commonly used for this purpose are the observed first and last occurrence (abbreviated to FO and LO) of each fossil taxon considered. Co-occurrences of fossil taxa in the biostratigraphic record can be used as well. Methods for the integration and long-distance correlation of observed biostratigraphic events include the RASC method for RAnking and SCaling. The main difference between RASC and other methods of regional biostratigraphic correlation is that RASC estimates the relative positions of average fossil events instead of maximal time-stratigraphic ranges, although maximal ranges also can be obtained by using RASC. Different methods of quantitative stratigraphy are briefly reviewed in this chapter. Initially, ranking is illustrated by application to a simple, artificial dataset. Scaling is explained as a refinement of ranking. Implications of techniques of sampling stratigraphic sections are discussed. RASC probable positions with error bars can be determined in different sections for CASC correlation over long distances. This process makes use of spline-curve fitting (splining). For method comparison, several datasets published by others are re-analyzed, not only to establish regional biostratigraphic standards but also to perform correlations between stratigraphic sections. These datasets include FOs and LOs of Eocene nannofossils in wells drilled in California and trilobites from the Cambrian Riley Formation in central Texas. Large-scale RASC/CASC applications involving many thousands of observations include results for well data from the Cenozoic North Sea basin, northwestern Atlantic margin and the Cretaceous seaway between Norway and Greenland. Paleoceanographic interpretations of RASC biozonations supplemented by analysis of variance to study diachronism and correlations between wells are exemplified as well.

The international numerical geologic time scales have been and continue to be partially based on spline-curves fitted to relate age determinations on rock samples to their positions in the relative geologic time scale that is based on classifications of rock units that can be correlated worldwide. Methods of time scale construction are discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agterberg FP (1988) Quality of time scales – a statistical appraisal. In: Merriam DF (ed) Current trends in geomathematics. Plenum, New York

    Google Scholar 

  • Agterberg FP (1990) Automated stratigraphic correlation. Elsevier, Amsterdam

    Google Scholar 

  • Agterberg FP (1994) Estimation of the mesozoic geological time scale. Math Geol 26:857–876

    Article  Google Scholar 

  • Agterberg FP (2002) Construction of numerical geological time scales. Terra Nostra, April 2002, pp 227–232

    Google Scholar 

  • Agterberg FP (2004) Geomathematics. In: Gradstein JM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, Cambridge, pp 106–125 & Appendix 3, pp 485–486

    Google Scholar 

  • Agterberg FP (2013) Timescale. Earth Syst Environ Sci Refer Mod 1–9

    Google Scholar 

  • Agterberg FP, Gradstein FM (1988) Recent developments in stratigraphic correlation. Earth Sci Rev 25:1–73

    Article  Google Scholar 

  • Agterberg FP, Gradstein FM (1999) The RASC method for ranking and scaling of biostratigraphic events. Earth Sci Rev 46:1–25

    Article  Google Scholar 

  • Agterberg FP, Liu G (2008) Use of quantitative stratigraphic correlation in hydrocarbon exploration. Int J Oil Gas Coal Technol 1(4):357–381

    Article  Google Scholar 

  • Agterberg FP, Nel LD (1982a) Algorithms for the ranking of stratigraphic events. Comput Geosci 8:69–90

    Article  Google Scholar 

  • Agterberg FP, Nel LD (1982b) Algorithms for the scaling of stratigraphic events. Comput Geosci 8:163–189

    Article  Google Scholar 

  • Agterberg FP, Oliver J, Lew SN, Gradstein FM, Williamson MA (1985) CASC FORTRAN IV interactive computer program for correlation and scaling in time of biostratigraphic events, Geological Survey of Canada open file report 1179. Geological Survey of Canada, Ottawa

    Book  Google Scholar 

  • Agterberg FP, Gradstein FM, Nazli K (1990) Correlation of Jurassic microfossil abundance data from the Tojeira section, Portugal. Geol Surv Can Pap 89–9:467–482

    Google Scholar 

  • Agterberg FP, Gradstein FM, Liu G (2007) Modeling the frequency distribution of biostratigraphic interval zone thicknesses in sedimentary basins. Nat Resour Res 16(3):219–233

    Article  Google Scholar 

  • Agterberg FP, Hammer O, Gradstein FM (2012) Statistical procedures, Chap 14. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 269–274

    Chapter  Google Scholar 

  • Agterberg FP, Gradstein FM, Cheng Q, Liu G (2013) The RASC and CASC programs for ranking, scaling and correlation of biostratigraphic events. Comput Geosci 54:279–292

    Article  Google Scholar 

  • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26(4):707–733

    Article  Google Scholar 

  • Becker RT, Gradstein FM, Hammer O (2012) The Devonian period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 559–601

    Chapter  Google Scholar 

  • Benton MJ, Harper DAT (2009) Introduction to paleobiology and the fossil record. Wiley-Blackwell, Chichester

    Google Scholar 

  • Bramlette MN, Sullivan FR (1961) Coccolithophorids and related nannoplankton of the Early Tertiary in California. Micropaleontology 7:129–188

    Article  Google Scholar 

  • Brower JC (1985) Archeological seriation of an original data matrix. In: Gradstein FM, Agterberg FP, Brower JC, Schwarzacher WS (eds) Quantitative stratigraphy. UNESCO, Paris/Reidel/Dordrecht, pp 95–108

    Google Scholar 

  • Cody RD, Levy RH, Harwood DM, Sadler PM (2008) Thinking outside the zone: high-resolution quantitative diatom biochronology for the arctic Neogene. Palaeogeogr Palaeoclimatol Palaeoecol 260:92–121

    Article  Google Scholar 

  • Cooper RA (1999) The Ordovician time scale – calibration of graptolite and conodont zones. Acta Univ Carol Geol 43(1/2):1–4

    Google Scholar 

  • Cooper RA, Sadler PM (2012) The Ordovician period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 489–523

    Chapter  Google Scholar 

  • Cooper RA, Agterberg FP, Alloway BV, Beu AG, Campbell HJ, Crampton JS, Crouch EM, Crundwell MP, Graham IJ, Hollis CJ, Jones CM, Kamp PJJ, Mildenhall DC, Morgans HEG, Naish TR, Raine JI, Roncaglia I, Sadler PM, Schiøler P, Scot, GH, Strong CP, Wilson GJ, Wilson GS (2004) The New Zealand geological timescale. Institute of Geological & Nuclear Sciences Monograph 22. Institute of Geological & Nuclear Sciences, Lower Hutt

    Google Scholar 

  • Crampton JS, Foote M, Cooper RA, Beu AG, Peters SA (2012) The fossil record and spatial structuring of environments and biodiversity in the Cenozoic of New Zealand. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil records: implications for biodiversity studies, Geological Society London special publication 358. Geological Society, London, pp 105–122

    Google Scholar 

  • D’Iorio MA (1988) Quantitative biostratigraphic analysis of the Cenozoic of the Labrador Shelf and Grand Banks. Unpublished PhD thesis, University of Ottawa, Ottawa

    Google Scholar 

  • D’Iorio MA, Agterberg FP (1989) Marker event identification technique and correlation of Cenozoic biozones on the Labrador Shelf and Grand Banks. Bull Can Soc Petrol Geol 37:346–357

    Google Scholar 

  • Davaud E, Guex J (1978) Traitement analytique ‘manuel’ et algorithmique de problèmes complexes de corrĂ©lations biochronologiques. Ecl Gel Helv 71(10):581–610

    Google Scholar 

  • De Boor C (1978) A practical guide to splines. Springer, New York

    Book  Google Scholar 

  • Dubrule O (1984) Comparing splines and kriging. Comput Geosci 10:327–338

    Article  Google Scholar 

  • Edwards LE (1978) Range charts and space graphs. Comput Geosci 4:247–258

    Article  Google Scholar 

  • Edwards LE, Beaver RJ (1978) The used of paired comparison models in ordering stratigraphic events. Math Geol 10:261–272

    Article  Google Scholar 

  • Endt PM, van der Leun C (1973) Energy levels of A = 21-44 (V) nuclei. Nucl Phys A 214:1–625

    Article  Google Scholar 

  • Eubank RI (1988) Spline smoothing and nonparametric regression. Dekker, New York

    Google Scholar 

  • Foote M, Miller AJ (2007) Principles of paleontology, 3rd edn. Freeman, New York

    Google Scholar 

  • Gradstein FM (1996) STRATCOR – Graphic zonation and correlation software – user’s guide, version 4

    Google Scholar 

  • Gradstein FM, Agterberg FP (1982) Models of Cenozoic foraminiferal stratigraphy – northwestern Atlantic margin. In: Cubitt JM, Reyment RA (eds) Quantitative stratigraphic correlation. Wiley, Chichester, pp 119–173

    Google Scholar 

  • Gradstein FM, Agterberg FP, Brower JC, Schwarzacher WS (1985) Quantitative stratigraphy. UNESCO, Paris/Reidel, Dordrecht

    Google Scholar 

  • Gradstein FM, Agterberg FP (1985) Quantitative correlation in exploration micropaleontology. In: Gradstein FM, Agterberg FP, Brower JC, Schwarzacher WS (eds) UNESCO, Paris/Reidel, Dordrecht, pp 309–357

    Google Scholar 

  • Gradstein FM, Agterberg FP (1998) Uncertainty in stratigraphic correlation. In: Gradstein FM, Sandrik FM, Milton D (eds) Sequence stratigraphy-concepts and applications. Elsevier, Amsterdam, pp 9–29

    Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, van Veen P, Thierry J, Huang Z (1994) A mesozoic time scale. J Geophys Res 99(B12):24,051–24,074

    Article  Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, van Veen P, Thierry J, Huang Z (1995) A Triassic, Jurassic and cretaceous time scale. In: Berggren WA (ed) Geochronology, time scales and global stratigraphic correlation, SEPM (Society for Sedimentary Geology) special publication 54. SEPM, Tulsa, pp 95–126

    Chapter  Google Scholar 

  • Gradstein FM, Kaminski MA, Agterberg FP (1999) Biostratigraphy and paleoceanography of the cretaceous seaway between Norway and Greenland. Earth Sci Rev 46:27–98 (erratum 50:135-136)

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (eds) (2004) A geologic time scale 2004. Cambridge University Press, Cambridge

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) (2012) The geologic time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Guex J (1987) CorrĂ©lations biochronologiques et associations Unitaires. Press Polytech Rom, Lausanne

    Google Scholar 

  • Guex J (1991) Biochronological correlations. Springer, Berlin

    Book  Google Scholar 

  • Hammer O, Harper D (2005) Paleontological data analysis. Blackwell, Ames

    Book  Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Harland WB, Armstrong RI, Cox AV, Craig LA, Smith AG, Smith DG (1990) A geologic time scale 1989. Cambridge University Press, Cambridge

    Google Scholar 

  • Harper CW Jr (1981) Inferring succession of fossils in time. The need for a quantitative and statistical approach. J Paleontol 55:442–452

    Google Scholar 

  • Hay WW (1972) Probabilistic stratigraphy. Ecl Helv 75:255–266

    Google Scholar 

  • Hohn ME (1993) SAS program for quantitative correlation by principal components. Comput Geosci 11:471–477

    Article  Google Scholar 

  • Holmes A (1960) A revised geological time-scale. Trans Edinb Geol Soc 17:117–152

    Google Scholar 

  • Holmes A (1965) Principles of physical geology. Nelson Printers, London

    Google Scholar 

  • Hood KC (1995) GraphCor – interactive graphic correlation software, version 2.2

    Google Scholar 

  • Hudson CB, Agterberg FP (1982) Paired comparison in biostratigraphy. Math Geol 14:69–90

    Google Scholar 

  • Jackson PW (2006) The chronologers’ quest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kaminski MA, Gradstein FM (2005) Atlas of Paleogene cosmopolitan deep-water agglutinated Foraminifera, Grzybowski Foundation special publication 10. Grzybowski Foundation, KrakĂ³w

    Google Scholar 

  • Kemple WG, Sadler PM, Strauss DG (1989) A prototype constrained optimization solution to the time correlation problem. In: Agterberg FP, Bonham-Carter GF (eds) Statistical applications in the earth sciences. Geological Survey of Canada Paper 89-9, Ottawa, pp 417–425

    Google Scholar 

  • Kemple WG, Sadler PM, Strauss DG (1995) Extending graphic correlation to many dimensions: stratigraphic correlation as constrained optimisation. In: Mann KO, Lane HR, Scholle PA (eds) Graphic correlation, vol 53. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 65–82

    Chapter  Google Scholar 

  • Kuiper K, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320(5875):500–504

    Article  Google Scholar 

  • Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating the decay constant of 40K and the age of a dating standard. Math Geol 34(4):457–474

    Article  Google Scholar 

  • Liu G, Cheng Q, Agterberg FP (2007) Design and application of graphic modules for RASC/CASC quantitative stratigraphic software. In: Zhao P, Agterberg FP, Cheng Q (eds) Proceedings of IAMG annual meeting, Beijing, August 2007, pp 719–722

    Google Scholar 

  • Lybanon M (1984) A better least-squares method when both variables have uncertainties. Am J Phys 52(1):22–26

    Article  Google Scholar 

  • Lyell C (1833) Principles of geology. Murray, London

    Google Scholar 

  • Mann KO, Lane HR (1995) Graphic correlation, SEPM (Society for Sedimentary Geology) special publication 53. SEPM (Society for Sedimentary Geology), Tulsa

    Book  Google Scholar 

  • Martinsson A (ed) (1977) The Silurian- Devonian boundary: final report of the Committee of the Siluro-Devonian boundary within IUGS Commission on Stratigraphy and a state of the art report for Project Ecostratigraphy. IUGS Series A 5, Beijing

    Google Scholar 

  • Mattinson JM (2010) Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem Geol 99:1–13

    Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • McKerrow WS, Lambert BSJ, Chamberlain VE (1980) The Ordovician. Silurian and Devonian time scales. Earth Planet Sci Lett 51:1–8

    Article  Google Scholar 

  • Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar//39Ar geochronology through comparison with U/b analysis of a 1.1-Ga rhyolite. Geoch Cosmoch Acta 64(1):73–98

    Article  Google Scholar 

  • Mouterde R, Ruget C, Tintant H (1973) Le passage Oxfordien – Kimmeridgien en Portugal (regions de Torres Vedras et du Montegunto). Com Rend Acad Sci Paris 277(D):2645–2648

    Google Scholar 

  • Nazli K (1988) Geostatistical modelling of microfossil abundance data in upper Jurassic shale, Tojeira sections, central Portugal. Unpublished MSc thesis, University of Ottawa, Ottawa

    Google Scholar 

  • Odin GS (1994) Geologic time scale (1994). Com Rend Acad Sci Paris s II 318:59–71

    Google Scholar 

  • PĂ¡lfy J, Smith PI, Mortensen JK (2000) A U-Pb and 40Ar/39Ar time scale for the Jurassic. Can J Earth Sci 37:923–944

    Article  Google Scholar 

  • Palmer AR (1954) The faunas of the Riley formation in central Texas. J Paleontol 28:709–788

    Google Scholar 

  • Reinsch CH (1967) Soothing by spline functions. Num Math 10:177–183

    Article  Google Scholar 

  • Remane J, Basset MG, Cowie JW, Gohrband TM, Lane HR, Michelsen O, Wang N (1996) Revised guidelines for the establishment of global chronostratigraphic standards by the international commission on stratigraphy (ICS). Episodes 19(3):77–81

    Google Scholar 

  • Renne PR, Swisher CC III, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Ripley BD, Thompson M (1987) Regression techniques for the detection of analytical bias. Analyst 112:377–383

    Article  Google Scholar 

  • Sadler PM (2001) Constrained optimisation – approaches to the paleobiologic correlation and seriation problems: a users’ guide and reference manual to the CONOP program family. Unpublished, PM Sadler, Riverside

    Google Scholar 

  • Sadler PM (2004) Quantitative biostratigraphy achieving finer resolution in global correlation. Annu Rev Earth Planet Sci 32:187–231

    Article  Google Scholar 

  • Schmitz MD (2012) Radiometric isotope chronology. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 115–126

    Chapter  Google Scholar 

  • Schoenberg IJ (1964) Spline functions and the problem of graduation. Proc Natl Acad Sci U S A 52:947–950

    Article  Google Scholar 

  • Shaw AG (1964) Time in stratigraphy. McGraw-Hill, New York

    Google Scholar 

  • Stam B (1987) Quantitative analysis of middle and late Jurassic foraminifera from Portugal and its implications for the Grand Banks of Newfoundland, Utrecht micropaleontal bulletins 34. State University of Utrecht, Utrecht

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Sullivan FR (1964) Lower Tertiary nannoplankton from the California coast ranges, 1 Paleocene, University of California publications in geological sciences. University of California Press, Berkeley

    Google Scholar 

  • Sullivan FR (1965) Lower Tertiary nannoplankton from the California coast ranges. II. Eocene, University of California publications in geological sciences. University of California Press, Berkeley

    Google Scholar 

  • Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

    Book  Google Scholar 

  • Watson GS (1984) Smoothing and interpolation by kriging and with splines. J Int Assoc Math Geol 16(6):601–625

    Article  Google Scholar 

  • Whittaker ET (1923) On a new method of graduation. Proc Edinb Math Soc 41:63–75

    Google Scholar 

  • Williamson MJ (1987) Quantitative biozonation of the late Jurassic and early cretaceous of the East Newfoundland Basin. Micropaleontology 33:37–65

    Article  Google Scholar 

  • Worsley TR, Jorgens ML (1977) Automated biostratigraphy. In: Ramsay ATS (ed) Oceanic micropaleontology. Academic, London

    Google Scholar 

  • Zhang T, Plotnick RE (2006) Graphic biostratigraphic correlation using genetic algorithms. Math Geol 38(7):781–800

    Article  Google Scholar 

  • Zhou D (2008) RASC/CASC: example of creative application of statistics in geology. In: Bonham-Carter G, Cheng Q (eds) Progress in geomathematics. Springer, Heidelberg, pp 377–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agterberg, F. (2014). Quantitative Stratigraphy, Splining and Geologic Time Scales. In: Geomathematics: Theoretical Foundations, Applications and Future Developments. Quantitative Geology and Geostatistics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-06874-9_9

Download citation

Publish with us

Policies and ethics