Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 18))

Abstract

Multifractals are spatially intertwined fractals. For example, a chemical concentration value obtained from rock samples in a study area may be a fractal with fractal dimension different from those of other concentration values for the same element, but together the fractal dimensions may form a multifractal spectrum f (α) that is a continuous function of the singularity α, which depends on the concentration value. Self-similar patterns produce multifractals of this type. If a block of rock with chemical concentration value X is divided into equal parts, the halves have concentration values (1 + d) · X and (1 − d) · X where d is a constant. The model of de Wijs assumes that the dispersion index d is independent of block size. This cascade process produces a multifractal. The properties of a multifractal can be estimated by the method of moments or by the histogram method. The four-step method of moments has the advantage that the assumption of multifractality is being tested during its first step because this should produce an array of straight lines on a log-log plot of the spatial mass-partition function χ (ϵ,q) against measure of block size (ϵ) used. It should be kept in mind, however, that the multifractal spectrum estimated by the method of moments is primarily determined by the majority of measurements that are clustered around the mean or median. Very large or very small observed values are rare; because of this, the low-singularity and high-singularity tails of a multifractal spectrum generally cannot be estimated with sufficient precision. Because of strong local autocorrelations effects, singularity analysis can provide better estimates of singularities associated with the very large or very small observed values. Practical examples of multifractal modeling include the distribution of gold in the Mitchell-Sulphurets area, northwestern British Columbia, uranium resources in the U.S. and worldwide, lengths of surface fractures in the Lac du Bonnet Batholith, eastern Manitoba, geographic distribution of gold deposits in the Iskut map area, British Columbia. Local singularity mapping is useful for the detection of geochemical anomalies characterized by local enrichment even if contour maps for representing average variability are not constructed. Examples include singularity maps based on various element concentration values from stream sediment samples and their relation to tin deposits in the Gejiu area, Yunnan Province, as well as Ag and Pb-Zn deposits in northwestern Zhejiang Province, China. The iterative Chen algorithm for space series of element concentration values offers a new way to separate local singularities from regional trends. This technique is applied to the Pulacayo zinc and KTB copper values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aczél J, Dhombres J (1989) Functional equations in several variables. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Agterberg FP (1994a) Fractals, multifractals, and change of support. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer, Dordrecht, pp 223–234

    Chapter  Google Scholar 

  • Agterberg FP (1994b) FORTRAN program for the analysis of point patterns with correction for edge effects. Comput Geosci 20:229–245

    Article  Google Scholar 

  • Agterberg FP (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37:1–8

    Article  Google Scholar 

  • Agterberg FP (1997) Multifractal modelling and geostatistics applied to bore-hole fractures in the Lac du Bonnet Batholith, Manitoba, Canada. In: Proceedings of the 6th international geostatistics congress Wollongong, Australia. Kluwer, Dordrecht, Sept 1996, pp 1163–1172

    Google Scholar 

  • Agterberg FP (2001) Multifractal simulation of geochemical map patterns. In: Merriam DF, Davis JC (eds) Geologic modeling and simulation: sedimentary systems. Kluwer, New York, pp 327–346

    Chapter  Google Scholar 

  • Agterberg FP (2007a) New applications of the model of de Wijs in regional geochemistry. Math Geol 39(1):1–26

    Article  Google Scholar 

  • Agterberg FP (2007b) Mixtures of multiplicative cascade models in geochemistry. Nonlinear Process Geophys 14:201–209

    Article  Google Scholar 

  • Agterberg FP (2012a) Sampling and analysis of element concentration distribution in rock units and orebodies. Nonlinear Process Geophys 19:23–44

    Article  Google Scholar 

  • Agterberg FP (2012b) Multifractals and geostatistics. J Geochem Explor 122:113–122

    Article  Google Scholar 

  • Agterberg FP, Cheng Q, Wright DF (1993) Fractal modeling of mineral deposits. In: Elbrond J, Tang X (eds) Application of computers and operations research in the mineral industry. In: Proceedings of the 24th APCOM symposium 1, Canadian Institute of Mining, Metallurgy and Petroleum Engineering, Montreal, pp 43–53

    Google Scholar 

  • Agterberg FP, Cheng Q, Brown A, Good D (1996a) Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Comput Geosci 22:497–507

    Article  Google Scholar 

  • Agterberg FP, Brown A, Sikorsky RI (1996b) Multifractal modeling of subsurface fractures from bore-holes near the Underground Research Laboratory, Pinawa, Manitoba. In: Deep geological disposal of radioactive waste, Proceedings of the international conference on Canadian Nuclear Society, Winnipeg, vol 3, pp 1–12

    Google Scholar 

  • Arias M, Gumiel P, Sanderson DJ, Martin-Izard A (2011) A multifractal simulation model for the distribution of VMS deposits in the Spanish segment of the Iberian Pyrite Belt. Comput Geosci 37:1917–1927

    Article  Google Scholar 

  • Arias M, Gumiel P, Martin-Izard A (2012) Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena Zone, Variscan Massif (Spain). J Geochem Explor 122:101–112

    Article  Google Scholar 

  • Bickel PJ, Doksum KA (2001) Mathematical statistics, vol 1, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Brinck JW (1971) MIMIC, the prediction of mineral resources and long-term price trends in the non-ferrous metal mining industry is no longer Utopian. Eurospectra 10:46–56

    Google Scholar 

  • Brinck JW (1974) The geochemical distribution of uranium as a primary criterion for the formation of ore deposits. In: Chemical and physical mechanisms in the formation of uranium mineralization, geochronology, isotope geology and mineralization. In: IAEA Proceedings of Series STI/PUB/374, International Atomic Energy commission, Vienna, pp 21–32

    Google Scholar 

  • Brown A, Soonawala NM, Everitt RA, Kamineni DC (1989) Geology and geophysics of the underground research laboratory site, Lac du Bonnet Batholith. Manitoba. Can J Earth Sci 26:404–425

    Article  Google Scholar 

  • Chen Z, Cheng Q, Chen J, Xie S (2007) A novel iterative approach for mapping local singularities from geochemical data. Nonlinear Process Geophys 14:317–324

    Article  Google Scholar 

  • Cheng Q (1994) Multifractal modeling and spatial analysis with GIS: gold mineral potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia. Unpublished Doctoral Dissertation, University of Ottawa

    Google Scholar 

  • Cheng Q (1999) Multifractal interpolation. In: Lippard SJ, Naess A, Sinding-Larsen R (eds) Proceedings of Fifth Annual Conference of the International Association for Mathematical Geology, Tapir, Trondheim, pp 245–250

    Google Scholar 

  • Cheng Q (2003) GeoData Analysis System (GeoDAS) for mineral exploration and environmental assessment, user’s guide. York University, Toronto

    Google Scholar 

  • Cheng Q (2005) A new model for incorporating spatial association and singularity in interpolation of exploratory data. In: Leuangthong D, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Dordrecht, pp 1017–1025

    Chapter  Google Scholar 

  • Cheng Q (2008) Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. In: Bonham-Carter GF, Cheng Q (eds) Progress in geomathematics. Springer, Heidelberg, pp 195–225

    Chapter  Google Scholar 

  • Cheng Q, Agterberg FP (1995) Multifractal modeling and spatial point processes. Math Geol 27(7):831–845

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (1996) Multifractal modeling and spatial statistics. Math Geol 28(1):1–16

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (2009) Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci 35:234–244

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994a) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51(2):109–130

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1994b) Fractal pattern integration for mineral potential mapping. In: Proceedings of IAMG’94, Mont Tremblant, pp 74–80

    Google Scholar 

  • Cheng Q, Bonham-Carter GF, Agterberg FP, Wright DF (1994c) Fractal modelling in the geosciences and implementation with GIS. In: Proceedings of 6th Canadian Conference Institute Survey Map, Ottawa, vol 1, pp 565–577

    Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56:183–195

    Article  Google Scholar 

  • Chhabra A, Jensen RV (1989) Direct determination of the f (α) singularity spectrum. Phys Rev Lett 62(12):1327–1330

    Article  Google Scholar 

  • Cowie PA, Sornette D, Vanneste C (1995) Multifractal scaling properties of a growing fault population. Geophys J Int 122(2):457–469

    Article  Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Darnley AG (1995) International geochemical mapping – a review. J Geochem Explor 55:5–10

    Article  Google Scholar 

  • Darnley AG, Garrett RG, Hall GEM (1995) A global geochemical database for environmental and resource management: recommendations for international geochemical mapping, Final report of IGCP project 259. UNESCO, Paris

    Google Scholar 

  • De Wijs HJ (1951) Statistics of ore distribution I. Geol Mijnbouw 13:365–375

    Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic, London

    Google Scholar 

  • Evertsz CJG, Mandelbrot BB (1992) Multifractal measures. In: Peitgen H-O, Jurgens H, Saupe D (eds) Chaos and fractals. Springer, New York

    Google Scholar 

  • Falconer K (2003) Fractal geometry, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Feder J (1988) Fractals. Plenum, New York

    Book  Google Scholar 

  • Garrett RG (1986) Geochemical abundance models: an update, 1975 to 1987. US Geol Surv Cir 980:207–220

    Google Scholar 

  • Ghosh A, Daemen JJK (1993) Fractal characteristics of rock discontinuities. Eng Geol 34(1):1–9

    Article  Google Scholar 

  • Gillespie PA, Howard CB, Walsh JJ, Watterson J (1993) Measurement and characterisation of spatial distributions of fractures. Tectonophysics 226(1):113–141

    Article  Google Scholar 

  • Gonçalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modeling. J Geochem Explor 72:91–114

    Article  Google Scholar 

  • Harris DP (1984) Mineral resources appraisal. Clarendon, Oxford

    Google Scholar 

  • Herzfeld UC, Overbeck C (1999) Analysis and simulation of scale-dependent fractal surfaces with application to seafloor morphology. Comput Geosci 25(9):979–1007

    Article  Google Scholar 

  • Herzfeld UC, Kim II, Orcutt JA (1995) Is the ocean floor a fractal? Math Geol 27(3):421–442

    Article  Google Scholar 

  • Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam

    Google Scholar 

  • Krige DG (1966) A study of gold and uranium distribution pattern in the Klerksdorp goldfield. Geoexploration 4:43–53

    Article  Google Scholar 

  • Lerche I (1993) A probabilistic procedure to assess the uncertainty of fractal dimensions from measurements. Pure Appl Geophys 140(3):503–517

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (1991) Multifractal analysis techniques and the rain and cloud fields from 10−3 to 106 m. In: Schertzer D, Lovejoy S (eds) Non-linear variability in geophysics. Kluwer, Dordrecht, pp 111–144

    Chapter  Google Scholar 

  • Lovejoy S, Schertzer D (2007) Scaling and multifractal fields in the solid earth and topography. Nonlinear Process Geophys 14:465–502

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Mandelbrot BB (1989) Multifractal measures, especially for the geophysicist. Pure Appl Geophys 131:5–42

    Article  Google Scholar 

  • Matheron G (1962) Traité de géostatistique appliquée, Mém BRGM 14. Technip, Paris

    Google Scholar 

  • Meneveau C, Sreenivasan KR (1987) Simple multifractal cascade model for fully developed turbulence. Phys Rev Lett 59(7):1424–1427

    Article  Google Scholar 

  • Pahani A, Cheng Q (2004) Multifractality as a measure of spatial distribution of geochemical patterns. Math Geol 36:827–846

    Article  Google Scholar 

  • Plant J, Hale M (eds) (1994) Handbook of exploration geochemistry 6. Elsevier, Amsterdam

    Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley-Interscience, New York

    Book  Google Scholar 

  • Roach DE, Fowler AD (1993) Dimensionality analysis of patterns: fractal measurements. Comput Geosci 19(6):843–869

    Article  Google Scholar 

  • Ruzicka V (1976) Uranium resources evaluation model as an exploration tool – exploration for uranium deposits. IAEA Proc Ser 434:673–682

    Google Scholar 

  • Schertzer D, Lovejoy S (1991) Non-linear geodynamical variability: multiple singularities, universality and observables. In: Schertzer D, Lovejoy S (eds) Non-linear variability in geophysics. Kluwer, Dordrecht, pp 41–82

    Chapter  Google Scholar 

  • Stanley H, Meakin P (1988) Multifractal phenomena in physics and chemistry. Nature 335:405–409

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Veneziano D, Furcolo P (2003) Marginal distribution of stationary multifractal measures and their Haar wavelet coefficients. Fractals 11(3):253–270

    Article  Google Scholar 

  • Veneziano D, Langousis A (2005) The maximum of multifractal cascades: exact distribution and approximations. Fractals 13(4):311–324

    Article  Google Scholar 

  • Walsh JJ, Watterson J (1993) Fractal analysis of fracture patterns using the standard boxcounting technique: valid and invalid methodologies. J Struct Geol 15(12):1509–1512

    Article  Google Scholar 

  • Xiao F, Chen J, Zhang Z, Wang C, Wu G, Agterberg FP (2012) Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. J Geochem Explor 122:90–100

    Article  Google Scholar 

  • Xie X, Mu X, Ren T (1997) Geochemical mapping in China. J Geochem Explor 60:99–113

    Article  Google Scholar 

  • Xie S, Cheng Q, Chen Z, Bao Z (2007) Application of local singularity in prospecting potential oil/gas targets. Nonlinear Process Geophys 14:185–292

    Google Scholar 

  • Yu C (2002) Complexity of earth systems – fundamental issues of earth sciences. J China Univ Geosci 27:509–519 (in Chinese; English abstract)

    Google Scholar 

  • Zuo R, Cheng Q, Agterberg FP, Xia Q (2009) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor 101:225–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agterberg, F. (2014). Multifractals and Local Singularity Analysis. In: Geomathematics: Theoretical Foundations, Applications and Future Developments. Quantitative Geology and Geostatistics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-06874-9_11

Download citation

Publish with us

Policies and ethics