Skip to main content

Solar Energy Collector Systems

  • Chapter
  • First Online:

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Motivated by the growing interest on renewable energy, the structure and working principles of different types of industrial solar thermal plants are reviewed, including distributed collector solar fields, direct steam generation with distributed solar collectors, solar towers, and solar furnaces. The structure of the controllers for distributed collector solar fields is explained by identifying the manipulated variable, the process output, the accessible and non-accessible disturbances and the control objectives. In the real of these plants, it is explained why adaptive control is important and a literature review of this topic, that forms the core of the book, is made.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arahal M, Berenguel M, Camacho E (1998) Neural identification applied to predictive control of a solar plant. Control Eng Pract 6:333–344

    Google Scholar 

  • Barão M, Lemos JM, Silva RN (2002) Reduced complexity adaptive nonlinear control of a distributed collector solar field. J Proc Control 12:131–141

    Google Scholar 

  • Berenguel E, Camacho EF (1996) Frequency-based adaptive control of systems with antiresonance modes. Control Eng Pract 4(5):677–684

    Article  Google Scholar 

  • Berenguel M, Camacho EF (1995) Frequency based adaptive control of systems with antiressonance modes. Preprints of 5th IFAC symposium adaptive systems in control and signal processing. Budapest, Hungary, pp 195–200

    Google Scholar 

  • Berenguel M, Camacho, EF, García-Martín FJ, Rubio FR (1999) Temperature control of a solar furnace. IEEE Control Syst 19(1):8–24

    Google Scholar 

  • Boyle G (ed) (2004) Renewable energy. Oxford University Press

    Google Scholar 

  • Camacho EF, Berenguel M (1997) Robust adaptive model predictive control of a solar plant with bounded uncertainties. Int J Adapt Control Signal Proc 11(4):311–325

    Google Scholar 

  • Camacho EF, Berenguel M, Bordóns C (1994) Adaptive generalized predictive control of a distributed collector field, IEEE Trans Control Syst Technol 2(4):462–467

    Google Scholar 

  • Camacho EF, Berenguel M, Rubio F (1994) Application of a gain scheduling generalized predictive controller to a solar power plant. Control Eng Pract 2(2):227–238

    Google Scholar 

  • Camacho EF, Berenguel M, Rubio F (1997) Advanced control of solar plants. Springer

    Google Scholar 

  • Camacho EF, Berenguel M, Rubio FR, Martínez D (2012) Control of solar energy systems. Springer

    Google Scholar 

  • Camacho EF, Rubio FR, Berenguel M, Valenzuela L (2007) A survey on control schemes for distributed solar collector fields. Part I: modeling and basic control approaches. Solar Energy 81:1240–1251

    Google Scholar 

  • Camacho EF, Rubio FR, Berenguel M, Valenzuela L (2007) A survey on control schemes for distributed solar collector fields. Part II: advanced control approaches. Solar Energy 81:1252–1272

    Google Scholar 

  • Camacho EF, Rubio FR, Hughes FM (1992) Self-tuning control of a solar power plant with a distributed collector field. IEEE Control Syst Mag 72–78

    Google Scholar 

  • Cardoso A, Henriques J, Dourado A (1999) Fuzzy supervisor and feedforward control of a solar power plant using accessible disturbances. In: Proceedings of European Control Conference, ECC 99

    Google Scholar 

  • Carotenuto L, La Cava M, Muraca P, Raiconi G (1986) Feedforward control for the distributed parameter model of a solar power plant. Large Scale Syst 11:233–241

    Google Scholar 

  • Carotenuto L, La Cava M, Raiconi G (1985) Regulator design for the bilinear distributed parameter of a solar power plant. Int J Syst Sci 16:885–900

    Google Scholar 

  • Cirre CC, Berenguel M, Valenzuela L, Camacho EF (2007) Feedback linearization control for a distributed solar collector field. Control Eng Pract 15:1533–1544

    Google Scholar 

  • Coito F, Lemos JM, Silva RN, Mosca E (1997) Adaptive control of a solar energy plant: exploiting accessible disturbances. Int J Adapt Control Signal Process (11):327–342

    Google Scholar 

  • Costa BA, Lemos JM, Rosa LG (2011) Temperature control of a solar furnace for material testing. Int J Syst Sci 42(8):12531264

    Google Scholar 

  • Costa BA, Lemos JM (2009) An adaptive temperature control for a solar furnace. Control Eng Pract 17:1157–1173

    Article  Google Scholar 

  • Elliot DL (2009) Bilinear control systems. Springer

    Google Scholar 

  • Farkas I, Vajk I (2002) Internal model-based controller for a solar plant. In: Proceedings of 15th IFAC World Congress

    Google Scholar 

  • Flores A, Saez D, Araya J, Berenguel M, Cipriano A (2005) Fuzzy predictive control of a solar power plant. IEEE Trans Fuzzy Syst 13(1):58–68

    Google Scholar 

  • Green MA (2006) Third generation photovoltaics. Springer

    Google Scholar 

  • Igreja JM, Lemos JM, Barão M, Silva RN (2005) Adaptive receding horizon control of a distributed collector solar field. In: Proceedings of IEEE CDC-ECC 2005, Sevilla, Spain

    Google Scholar 

  • Ioannou P, Fidan B (2006) Adaptive control tutorial. SIAM

    Google Scholar 

  • Johansen TA, Hunt K, Petersen I (2000) Gain-scheduled control of a solar power plant. Control Eng Pract 8(9):1011–1022

    Google Scholar 

  • Johansen TA, Storaa C (2002) Energy-based control of a solar collector field. Automatica 38:1191–1199

    Article  MATH  MathSciNet  Google Scholar 

  • Krauter SCW (2010) Solar electric power generation—photovoltaic energy systems. Springer

    Google Scholar 

  • Lacasa D, Berenguel M, Yebra L, Martinez D (2006) Copper sintering in a solar furnace through fuzzy control. In: Proceedings of 2006 IEEE international conference on control applications, Germany

    Google Scholar 

  • Lemos JM, Rato LM, Mosca E (2000) Integrating predictive and switching control: basic concepts and an experimental case study. In: Allgöwer F, Zheng A (eds) Nonlinear model predictive control. Birkhäuser Verlag, Basel, pp 181–190

    Google Scholar 

  • Lemos JM (2006) Adaptive control of distributed collector solar fields. Int J Syst Sci 37(8):523–533

    Article  MATH  Google Scholar 

  • Meaburn A, Hughes FM (1993) Resonance characteristics of a distributed solar collector fields. Solar Energy 51(3):215–221

    Article  Google Scholar 

  • Meaburn A, Hughes FM (1994) Prescheduled adaptive control scheme for ressonance cancellation of a distributed solar collector field. Solar Energy 52(2):155–166

    Article  Google Scholar 

  • Miller FP, Vandome AF, McBrewster J (2010) Concentrating solar power. Alphascript Publishing

    Google Scholar 

  • Murray-Smith R, Johansen TA (1997) Multiple model approaches to modelling and control. Taylor & Francis

    Google Scholar 

  • Normey-Rico J, Bordons C, Berenguel M, Camacho EF (1998) A robust adaptive dead-time compensator with application to a solar collector field. In: Preprints 1st IFAC international workshop in linear time delay systems, New York, Pergamon, pp 105–110

    Google Scholar 

  • Orbach A, Rorres C, Fischl R (1981) Optimal control of a solar collector loop using a distributed-lumped model. Automatica 27(3):535–539

    Google Scholar 

  • Ordys AW, Pike MA, Johnson MA, Katebi, RM, Grimble, MJ (1994) Modelling and simulation of power generation plants. Springer, London

    Google Scholar 

  • Paradkar, A, Davari A, Feliachi A (2002) Temperature control of a solarfurnace with disturbance accommodating controller. In: Proceedings of 34th southeastern symposium on system theory

    Google Scholar 

  • Pasamontes M, Álvarez JD, Guzmán JL, Lemos JM, Berenguel M (2011) A switching control strategy applied to a solar collector field. Control Eng Pract 19:135145

    Google Scholar 

  • Pereira C, Dourado A (2002) Application of neuro-fuzzy network with support vector learning to a solar power plant. In: Proceedings of 15th IFAC World Congress

    Google Scholar 

  • Pickardt R (2000) Adaptive control of a solar power plant using a multi-model control. IEE Proc Theory Appl 147(5):493–500

    Google Scholar 

  • Pickhardt R (2000) Nonlinear modelling and adaptive predictive control of a solar power plant. Control Eng Pract 8(8):937–947

    Article  Google Scholar 

  • Rato LM, Silva RN, Lemos JM, Coito F (1997) Multirate MUSMAR cascade control of a distributed colar field. In: Proceedings of the European control conference, ECC97, Brussells, Belgium

    Google Scholar 

  • Rekioua D, Matagne E (2012) Optimization of photovoltaic power systems: modelisation, simulation and control. Springer

    Google Scholar 

  • Roca L, Guzman J, Normey-Rico J, Berenguel M, Yebra L (2009) Robust constrained predictive feedback linearization controller in a solar desalination plant controller field. Control Eng Pract 17:1076–1088

    Google Scholar 

  • Rorres C, Orbach A, Fischl R (1980) Optimal and suboptimal control policies for a solar collector system. IEEE Trans Autom Control AC-25 6:1085–1091

    Google Scholar 

  • Rubio FR, Berenguel M, Camacho EF (1995) Fuzzy logic control of a solar power plant. IEEE Trans Fuzzy Syst 3(4):459–468

    Article  Google Scholar 

  • Silva RN, Filatov N, Hunbehauen H, Lemos JM (2005) A dual approach to start-up of an adaptive predictive controller. IEEE Trans Control Syst Technol 13(6):877–883

    Google Scholar 

  • Silva RN, Rato LM, Lemos JM, Coito FV (1997) Cascade control of a distributed collector solar field. J Process Control 7(2):111–117

    Google Scholar 

  • Silva RN, Lemos JM, Rato LM (2003a) Variable sampling adaptive control of a distributed collector solar field. IEEE Trans Control Syst Technol 11(5):765–772

    Article  Google Scholar 

  • Silva RN, Rato LM, Lemos JM (2003b) Time Scaling internal predictive control of a solar plant. Control Eng Pract 11(12):1459–1467

    Article  Google Scholar 

  • Soares AO, Gonçalves A, Silva, RN, Lemos JM (1997) A methodology for impact evaluation of alternative control strategies in a large scale power plant. Control Eng Pract 5(3):325–335

    Google Scholar 

  • Stephanopoulos G (1984) Chemical process control: an introduction to theory and practice. Prentice-Hall (Int. Editions)

    Google Scholar 

  • Tiwari GN (2002) Solar energy. Alpha Science International ltd, Pangborne

    Google Scholar 

  • Valenzuela L, Zarza E, Berenguel M, Camacho EF (2004) Direct steam generation in solar boilers. IEEE Control Syst Mag 24(2):15–29

    Article  Google Scholar 

  • Valenzuela L, Zarza E, Berenguel M, Camacho EF (2005) Control concepts for direct steam generation in parabolic throughs. Solar Energy 78:301–311

    Article  Google Scholar 

  • Valenzuela L, Zarza E, Berenguel M, Camacho EF (2006) Control scheme for direct steam generation in parabolic throughs under recirculation operation mode. Solar Energy 80:1–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. Lemos .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lemos, J.M., Neves-Silva, R., Igreja, J.M. (2014). Solar Energy Collector Systems. In: Adaptive Control of Solar Energy Collector Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-06853-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06853-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06852-7

  • Online ISBN: 978-3-319-06853-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics