Skip to main content
  • 1713 Accesses

Abstract

This chapter begins with concluding remarks on the contributions of the book (see Sect. 7.1). We describe our contributions according to the objectives described in the Preface. Section 7.2 describes the future work, which includes verifying DRS designs at runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Cetin, O. Diessel, L. Gong, V. Lai, Towards bounded error recovery time in FPGA-based TMR circuits using dynamic partial reconfiguration, in International Conference on Field-Programmable Logic and Applications (FPL), Porto, 2013, pp. 1–4

    Google Scholar 

  2. S. Drzevitzky, U. Kastens, M. Platzner, Proof-carrying hardware: towards runtime verification of reconfigurable modules, in International Conference on Reconfigurable Computing and FPGAs (ReConFig), Cancun, 2009, pp. 189–194

    Google Scholar 

  3. W. Luk, N. Shirazi, P.Y. Cheung, Compilation tools for run-time reconfigurable designs, in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, 1997, pp. 56–65

    Google Scholar 

  4. C. Paiz, C. Pohl, R. Radkowski, J. Hagemeyer, M. Porrmann, U. Ruckert, FPGA-in-the-loop-simulations for dynamically reconfigurable applications, in International Conference on Field-Programmable Technology (FPT), Sydney, 2009, pp. 372–375

    Google Scholar 

  5. K. Paulsson, M. Hubner, M. Jung, J. Becker, Methods for run-time failure recognition and recovery in dynamic and partial reconfigurable systems based on Xilinx Virtex-II Pro FPGAs, in IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Karlsruhe, 2006, pp. 1–6

    Google Scholar 

  6. A. Raabe, P.A. Hartmann, J.K. Anlauf, ReChannel: describing and simulating reconfigurable hardware in SystemC. ACM Trans. Des. Autom. Electron. Syst. 13(1), 15:1–15:18 (2008)

    Google Scholar 

  7. I. Robertson, J. Irvine, A design flow for partially reconfigurable hardware. ACM Trans. Embed. Comput. Syst. (TECS) 3(2), 257–283 (2004)

    Google Scholar 

  8. S. Singh, C.J. Lillieroth, Formal verification of reconfigurable cores, in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, 1999, pp. 25–32

    Google Scholar 

  9. Xilinx Inc., Correcting Single-Event Upsets Through Virtex Partial Configuration (XAPP216) (Xilinx Inc., San Jose, 2000). http://www.xilinx.com/support.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gong, L., Diessel, O. (2015). Conclusions. In: Functional Verification of Dynamically Reconfigurable FPGA-based Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-06838-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06838-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06837-4

  • Online ISBN: 978-3-319-06838-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics