Skip to main content

Meta-emotion and Mathematical Modeling Processes in Computerized Environments

  • Chapter
  • First Online:
Book cover From beliefs to dynamic affect systems in mathematics education

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

Integrating technology into teaching mathematics is a complex issue whose inter-related components must be addressed holistically. The research on the interaction between affect and cognition proposed in this chapter focuses on a number of understudied areas in problem-solving: visualization, affect, meta-emotion and the identification of students’ affective pathways. The two studies described revealed the existence of several emotional phenomena associated with technology-assisted learning: (a) an initially positive attitude toward computer-aided mathematics learning and a preference for visual reasoning; (b) instrumental genesis associated with social and contextual dimensions of emotion and cognition; and (c) the effect of meta-emotion on task performance and the development of visual processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The three requirements to teach mathematics in Spanish secondary schools are: (a) a B.Sc. in mathematics or science, (b) an M.Sc. in education for secondary school, and (c) passing a series of public exams.

    The subjects of this study are working toward a B.Sc. in mathematics. Spanish Faculties of Mathematics offer specialised training in secondary school mathematics education as part of the undergraduate mathematics curriculum. The subjects presently available include: “Mathematics Education in Secondary Schools”, “Mathematics for Teaching” and Practicum (practice teaching in secondary schools).

    Most future teachers participating in this program believe that they have sound mathematics training, after having taken advanced courses in several areas of geometry, algebra and analysis. Two-thirds of these students acquire teaching experience prior to the training plan (Practicum) as private tutors or in tutoring schemes for secondary school students.

    The M.Sc. in Education (Secondary) is a post-graduate course that builds on prior learning and develops advanced professional knowledge, practice and relationship skills relevant to teaching.

References

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–224.

    Article  Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

    Article  Google Scholar 

  • Bodin, A., Coutourier, R., & Gras, R. (2000). CHIC: Classification Hiérarchique Implicative et Cohésive-Version sous Windows–CHIC 1.2, Association pour la Recherche en Didactique des Mathématiques Rennes.

    Google Scholar 

  • Cobb, P., Cofrey, J., di Sessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • De Corte, E., Depaepe, F., Op’t Eynde, P., & Verschaffel, L. (2011). Students’ self-regulation of emotions in mathematics: An analysis of meta-emotional knowledge and skills. ZDM, 43, 483–495.

    Article  Google Scholar 

  • de Guzmán, M. (2002). The role of visualization in the teaching and learning of mathematical analysis. In Proceedings of the 2nd international conference on the teaching of mathematics (at the undergraduate level). University of Crete, Greece.

    Google Scholar 

  • DeBellis, V. A., & Goldin, G. A. (1997). The affective domain in mathematical problem solving. In E. Pekhonen (Ed.), Proceedings of the PME 21 (Vol. 2, pp. 209–216).

    Google Scholar 

  • DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics, 63(2), 131–147.

    Article  Google Scholar 

  • Demetriou, A., & Kazi, S. (2001). Unity and modularity in the mind and the self. London: Routledge.

    Google Scholar 

  • Drijvers, P., Kieran, C., & Mariotti, M. A. (2010). Integrating technology into mathematics education: Theoretical perspective. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain (pp. 89–132). New York: Springer.

    Google Scholar 

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.

    Article  Google Scholar 

  • Eisenberg, T. (1994). On understanding the reluctance to visualize. Zentralblatt für Didaktik der Mathematik, 26, 109–113.

    Google Scholar 

  • Evans, J. (2000). Adults’ mathematical thinking and emotions: A study of numerate practices. London: Routledge Falmer.

    Google Scholar 

  • Forgasz, H. J. (2006). Teachers, equity, and computers for secondary mathematics learning. Journal for Mathematics Teacher Education, 9(5), 437–469.

    Article  Google Scholar 

  • Galbraith, P., & Haines, C. (2000). Mathematics-computing attitudes scales (Monographs in continuing education). London: City University London.

    Google Scholar 

  • Gliner, J. A., Morgan, G. A., & Leech, N. L. (2009). Sampling and introduction to external validity. In J. A. Gliner, G. A. Morgan, & N. L. Leech (Eds.), Research methods in applied setting: An integrated approach to design and analysis (pp. 115–133). New York: Routledge Taylor & Francis Group.

    Google Scholar 

  • Goldin, G. A. (2000). Affective pathways and representation in mathematical problem solving. Mathematical Thinking and Learning, 2(3), 209–219.

    Article  Google Scholar 

  • Goldin, G. (2002). Affect, meta-affect, and mathematical belief structures. In G. Leder, R. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 59–73). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Goldin, G. A. (2004). Characteristics of affect as a system of representation. In M. Johnsen Hoines & A. B. Fuglestad (Eds.), Proceedings of the PME 28 (Vol. 1, pp. 109–114). Bergen: Bergen University College.

    Google Scholar 

  • Goldin, G. A., Roesken, B., & Toerner, G. (2009). Beliefs – No longer a hidden variable in mathematics teaching and learning processes. In J. Maass & W. Schlöglmann (Eds.), Beliefs and attitudes in mathematics education: New research results (pp. 1–18). Rotterdam: Sense Publishers.

    Google Scholar 

  • Gómez-Chacón, I. M. (1997). Procesos de aprendizaje en matemáticas con poblaciones de fracaso escolar en contextos de exclusión social: Las influencias afectivas en el conocimiento de las matemáticas. Doctoral dissertation of Universidad Complutense de Madrid (Published in electronic version in 2004).

    Google Scholar 

  • Gómez-Chacón, I. M. (2000a). Matemática emocional. Los afectos en el aprendizaje matemático [Emotional mathematics. Affects in mathematics learning]. Madrid: Narcea.

    Google Scholar 

  • Gómez-Chacón, I. M. (2000b). Affective influences in the knowledge of mathematics. Educational Studies in Mathematics, 43, 149–168.

    Article  Google Scholar 

  • Gómez-Chacón, I. M. (2008). Suggesting practical advances in the research on affect in mathematical learning. In ICME-11, 11th international congress on mathematical education, Monterrey, México.

    Google Scholar 

  • Gómez-Chacón, I. M. (2011). Mathematics attitudes in computerized environments. A proposal using GeoGebra. In L. Bu & R. Schoen (Eds.), Model-centered learning: Pathways to mathematical understanding using GeoGebra (pp. 147–170). Rotterdam: Sense Publishers.

    Google Scholar 

  • Gómez-Chacón, I. M., & Escribano, J. (2011). Teaching geometric locus using GeoGebra. An experience with pre-service teachers. GeoGebra International Journal of Romania (GGIJRO), 2(1), 209–224.

    Google Scholar 

  • Gómez-Chacón, I. M., & Kuzniak, A. (2011). Les espaces de travail Géométrique de futurs professeurs en contexte de connaissances technologiques et professionnelles. Annales de Didactique et de Sciences Cognitives, 16, 187–216.

    Google Scholar 

  • Gottman, J. M., Katz, L. F., & Hooven, C. (1997). Introduction to the concept of meta-emotion. In J. M. Gottman, L. F. Katz, & C. Hooven (Eds.), Meta-emotion. New families communicate emotionally (pp. 3–8). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gras, R., Peter, P., Briand, H., & Philippé, J. (1997). Implicative statistical analysis. In C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H. Bock, & Y. Baba (Eds.), Proceedings of the 5th conference of the International Federation of Classification Societies (Vol. 2, pp. 412–419). New York: Springer.

    Google Scholar 

  • Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2004). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.

    Google Scholar 

  • Hannula, M. S. (2002). Attitude towards mathematics: Emotions, expectations and values. Educational Studies in Mathematics, 49(1), 25–46.

    Article  Google Scholar 

  • Leder, G. C., Pehkonen, E., & Torner, G. (Eds.). (2002). Beliefs: A hidden variable in mathematics education? Dordrecht: Kluwer.

    Google Scholar 

  • Liljedahl, P. (2005). Mathematical discovery and affect: The effect of AHA! experiences on undergraduate mathematics students. International Journal of Mathematical Education in Science and Technology, 36(2–3), 219–236.

    Article  Google Scholar 

  • Malmivuori, M. L. (2001). The dynamics of affect, cognition, and social environment in the regulation of personal learning processes: The case of mathematics (Research Report 172). Helsinki: Helsinki University Press.

    Google Scholar 

  • Malmivuori, M. L. (2006). Affect and self-regulation. Educational Studies in Mathematics, 63, 149–164.

    Article  Google Scholar 

  • McCulloch, A. W. (2011). Affect and graphing calculator use. Journal of Mathematical Behavior, 30, 166–179.

    Article  Google Scholar 

  • McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 575–596). New York: Macmillan.

    Google Scholar 

  • McLeod, D. B. (1994). Research on affect and mathematics learning in the JRME: 1970 to the present. Journal for Research in Mathematics Education, 25(6), 637–647.

    Article  Google Scholar 

  • Monaghan, J. (2004). Teachers’ activities in technology-based mathematics lessons. International Journal of Computers for Mathematical Learning, 9(3), 327–357.

    Article  Google Scholar 

  • Op’t Eynde, P., & Turner, J. E. (2006). Focusing on the complexity of emotion-motivation issues in academic learning: A dynamical, component systems approach. Educational Psychology Review, 18, 361–376.

    Article  Google Scholar 

  • Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341.

    Article  Google Scholar 

  • Pierce, R., Stacey, K., & Brakatsas, A. (2007). A scale for monitoring students’ attitudes to learning mathematics with technology. Computer and Education, 48, 285–300.

    Article  Google Scholar 

  • Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics. In Handbook of research on the psychology of mathematics education: Past, present and future. PME 1976-2006 (pp. 205–235). Rotterdam: Sense Publishers.

    Google Scholar 

  • Presmeg, N. C., & Bergsten, C. (1995). Preference for visual methods: An international study. In L. Meira, & D. Carraher (Eds.), Proceedings of PME 19 (Vol. 3, pp. 58–65), Recife.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies. Une approche cognitive des instruments contemporains. Paris: Université Paris 8.

    Google Scholar 

  • Schlöglmann, W. (2002). Affect and mathematics learning, In A. D. Cockburn, & E. Nardi (Eds.), Proceedings of the 26th PME (Vol. 3, pp. 185–192), Norwich, UK.

    Google Scholar 

  • Schlöglmann, W. (2005). Affect and cognition – Two poles of a learning process. In C. Bergsten & B. Grevholm (Eds.), Conceptions of mathematics. Proceedings of Norma 01 (pp. 215–222). Linköping: Svensk Förening för Matematikdidaktisk Forskning.

    Google Scholar 

  • Stylianou, D. Α. (2001). On the reluctance to visualize in mathematics: Is the picture changing? In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th PME (Vol. 4, pp. 225–232). Utrecht: Freudenthal Institute.

    Google Scholar 

  • Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92(4), 548–573.

    Article  Google Scholar 

  • Zan, R., Brown, L., Evans, J., & Hannula, M. S. (2006). Affect in mathematics education: An introduction. Educational Studies in Mathematics, 63(2), 113–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Mª Gómez-Chacón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez-Chacón, I.M. (2015). Meta-emotion and Mathematical Modeling Processes in Computerized Environments. In: Pepin, B., Roesken-Winter, B. (eds) From beliefs to dynamic affect systems in mathematics education. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-06808-4_10

Download citation

Publish with us

Policies and ethics