Advertisement

Electrons and Phonons in Wurtzitic Semi-conductors

Chapter
  • 1k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 197)

Abstract

We review the basic theory of electronic and lattice dynamics in crystals and applicate it to wurtzite semiconductors. The semiclassical theory of the dielectric constant, of paramount importance to treat optical properties is introduced as well as the \(\mathbf{k.p }\) method for computing electronic states in the neighborhood of a band structure extremum.

Keywords

Indium Nitride Valence Band Hamiltonian Phonon Deformation Potentials Semi-classical Theory Group Theory Arguments 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Jablan, M. Soljacic, H. Buljan, Unconventional plasmon-phonon coupling in graphene. Phys. Rev. B 83, 161409 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    V. Yu Davydov et al., The wurtzite structure. Phys. Rev. B 58, 12899 (1998)Google Scholar
  3. 3.
    Energy Band Theory, by J. Callaway, Academic Press, New York, (1964).Google Scholar
  4. 4.
    Electrons and Phonons, by J. M. Ziman, Oxford University Press, (1979)Google Scholar
  5. 5.
    Principles of the Theory of Solids, by J. M. Ziman, Cambridge University Press, Cambridge, (1979), ISBN: 0521297338Google Scholar
  6. 6.
    Electronic States and Optical Transitions in Solids, by F. Bassani, G. Pastori Parravicini, Pergamon Press, Oxford, (1975).Google Scholar
  7. 7.
    Fundamentals of Semiconductors, Physics and Materials Properties, by P (Springer-Verlag, Y. Yu and M. Cardona, 1996). ISBN 3540614613Google Scholar
  8. 8.
    Solid State Physics, by J (Cambridge University Press, S. Blakemore, 1985). ISBN 0521313910Google Scholar
  9. 9.
    Optical Processes in Semiconductors, by J. I. Pankove, Dover Publications Inc., New York, (1975), ISBN: 9780486602752.Google Scholar
  10. 10.
    Quantum Theory of Solids, by C (John Wiley and Sons, Kittel, 1987). ISBN 0471624128Google Scholar
  11. 11.
    Elemental Theory of Angular Momentum, by M (John Wiley and Sons, E. Rose, 1957). ISBN : 0486684806Google Scholar
  12. 12.
    The Physics of Vibrations and Waves, by H (John Wiley and Sons, J. Pain, 1976). ISBN 0471994081Google Scholar
  13. 13.
    Symmetry and Strain-induced effects in semiconductors, by G (John Wiley and Sons, L. Bir and G. E. Pikus, 1974). ISBN 0470073217Google Scholar
  14. 14.
    Unified theory of symmetry-breaking effects on excitons in cubic and wurtzite structures, K. Cho, Phys. Rev. B 14, 4463, (1976).Google Scholar
  15. 15.
    Semi-empirical tight-binding band structures of wurtzite semiconductors, AlN, CdS, CdSe, ZnS, and ZnO, A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow. Phys. Rev. B 28, 935 (1983)CrossRefGoogle Scholar
  16. 16.
    Consistent set of band parameters for the group, III nitrides AlN, GaN and InN, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. D. Scheffler. Phys. Rev. B 77, 075202 (2008)CrossRefGoogle Scholar
  17. 17.
    All deformation potentials in GaN determined by reflectance spectroscopy under uniaxial stress: definite breakdown of the quasi cubic approximation, R. Ishii, A. Kaneta, M. Funato, and Y. Kawakami, Phys. Rev. B 81, 155202, (2010).Google Scholar
  18. 18.
    Complete set of deformation potentials for AlN determined by reflectance spectroscopy under uniaxial stress, R. Ishii, A. Kaneta, M. Funato, and Y. Kawakami, Phys. Rev. B 87, 235201, (2013).Google Scholar
  19. 19.
    Effective masses and valence-band splittings in GaN and, AlN, K. Kim, W. R. L. Lambrecht, B. Segall, and M. van Schilfgaarde. Phys. Rev. B 56, 7363 (1997)CrossRefGoogle Scholar
  20. 20.
    Elastic constants and related properties of tetrahedrally bonded, BN, AlN, GaN, and InN, K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53, 16310, (1996), Erratum: Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN by K. Kim, W. R. Lambrecht, and B. Segall. Phys. Rev. B 56, 7018 (1997)Google Scholar
  21. 21.
    k.p method for strained wurtzite semiconductors, S. L. Chuang and C. S. Chang, Phys. Rev. B 54, 2491 (1996).Google Scholar
  22. 22.
    Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors, M. Kumagai, S. L. Chuang, and H. Ando, Phys. Rev. B 57, 15303 (1998).Google Scholar
  23. 23.
    Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors, S.-H. Park, and S. L. Chuang, Phys. Rev. B 59, 4725, (1999).Google Scholar
  24. 24.
    Phonon dispersion and Raman scattering in hexagonal GaN and AlN, V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899, (1998).Google Scholar
  25. 25.
    Piezospectroscopic studies of the Raman spectrum of Cadmium Sulfite, R. J. Briggs, and A. K. Ramdas, Phys. Rev. B 13, 12899, (1976)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut de Physique de MontpellierUniversity of Montpellier 2Montpellier Cedex 05France

Personalised recommendations