Skip to main content

Nonlinear Version of the Canonical Profiles Transport Model (CPTM) for Improved Confinement Regimes

  • Chapter
  • First Online:
Self-Organization of Hot Plasmas
  • 432 Accesses

Abstract

A nonlinear version of the CPTM is presented in this chapter. This version can be applied to tokamak regimes with improved confinement in the presence of External and/or Internal Transport Barriers (ETB, ITB). To describe these ETB or ITB in the expressions for the fluxes as presented in Chap. 5 some multipliers are included which nonlinearly (exponentially) depend on the pressure gradients. The appearance of barriers corresponds to a bifurcation of the solution of the transport equations which is localized in space. The appearance of an ETB is described by a bifurcation parameter. The appearance of an ITB is described by a bifurcation function with radial dependence. Both the bifurcation parameter and bifurcation function are determined by comparing with experimental data. Examples are given for several tokamaks. Asymptotic expressions are derived which allow to calculate the L–H transition threshold and to estimate the pedestal temperature values. The radial dependence of the ion temperature profile stiffness and its dependence on toroidal rotation velocity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner, F., et al.: Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX Tokamak. Phys. Rev. Lett. 49, 1408 (1982)

    Article  ADS  Google Scholar 

  2. Dnestrovskij, Yu.N., Lysenko, S.E., Tarasyan, K.N.: Improved confinement regimes within the transport model of canonical profiles. Nucl. Fusion 35, 1047 (1995)

    ADS  Google Scholar 

  3. ITER Physics Basis, Chapter 2, Plasma confinement and transport . Nucl. Fusion 39, 2175 (1999)

    Google Scholar 

  4. Dnestrovskij, Yu.N., Dnestrovskij, A.Yu., Lysenko, S.E.: Self-organization of plasma in a tokamak. Plasma Phys. Rep. 31, 529 (2005)

    Article  ADS  Google Scholar 

  5. Dnestrovskij, Yu.N., et al.: Analysis of pressure profiles and transport simulations of MAST discharges. Plasma Phys. Control. Fusion 49, 1477 (2007)

    Article  ADS  Google Scholar 

  6. Dnestrovskij, Yu.N., et al.: Canonical profiles and transport model for the toroidal rotation in tokamaks. Plasma Phys. Control. Fusion 53, 085025 (2011)

    Article  ADS  Google Scholar 

  7. Progress in ITER Physics Basis. Nucl. Fusion 47, S109 (2007)

    Google Scholar 

  8. Kirk, A., et al.: A comparison of H-mode pedestal characteristics in MAST as a function of magnetic configuration and ELM type. Plasma Phys. Control. Fusion 51, 065016 (2009)

    Article  ADS  Google Scholar 

  9. Hughes, J.V., et al.: Power requirements for superior H-mode confinement on Alcator C-Mod experiments in support of ITER. Nucl. Fusion 51, 083007 (2011)

    Article  ADS  Google Scholar 

  10. Connor, J.W., Hastie, R.J., Wilson, H.R.: Magnetohydrodynamic stability of tokamak edge plasmas. Phys. Plasma. 5, 2687 (1998)

    Article  ADS  Google Scholar 

  11. Groebner, R.J., et al.: Progress towards a predictive model for pedestal height in DIII-D. Nucl. Fusion 49, 085037 (2009)

    Article  ADS  Google Scholar 

  12. Groebner, R.J., Osborne, T.H., Leonard, A.W., Fenstermacher, M.E.: Temporal evolution of H-mode pedestal in DIII-D. Nucl. Fusion 49, 045013 (2009)

    Article  ADS  Google Scholar 

  13. Dnestrovskij, Yu.N., et al.: Application of canonical profiles transport model to the H-mode shots in Tokamaks. Plasma Phys. Rep. 36, 645 (2010)

    Article  ADS  Google Scholar 

  14. Dnestrovskij, Yu.N., et al.: Simulation of internal transport barriers with the help of the transport model of canonical profiles. Plasma Phys. Rep. 32, 1 (2006)

    Article  ADS  Google Scholar 

  15. Lebedev, S.V., Andrejko. M.V., Ashkinazi, L.G., Golant, V.E., et al.: H-mode studies in Tuman-3 and Tuman-3M. Plasma Phys. Control. Fusion 38, 1103 (1996)

    Article  ADS  Google Scholar 

  16. Alikaev, V.V., et al.: Investigation of the H-mode during ECRH in the T-10 tokamak. Plasma Phys. Rep. 26, 917 (2000)

    Google Scholar 

  17. G. Tresset et al.: A dimensionless criterion for characterizing internal transport barriers in JET. Nucl. Fusion 28, 520 (2002)

    Article  Google Scholar 

  18. The ITER 1D Modelling Working Group: Boucher, D., Connor, J.W., Houlberg, W.A., et al.: The international multi-tokamak profile database. Nucl. Fusion 40, 1955 (2000). http://tokamak-profiledb.ukaea.org.uk/

    Article  ADS  Google Scholar 

  19. Dnestrovskij, Yu.N., Kostomarov, D.P.: Mathematical modeling of plasma. Nauka, Moscow (1993) in Russian

    Google Scholar 

  20. Mantica, P., et al.: Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak. Phys. Rev. Lett. 102, 175002 (2009)

    Article  ADS  Google Scholar 

  21. Versloot, T.W., et al.: Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET. Nucl. Fusion 51, 103033 (2011)

    Article  Google Scholar 

  22. Mantica, P., et al. A key to improved ion core confinement in the JET tokamak: Ion stiffness mitigation due to combined plasma rotation and low magnetic shear. Phys. Rev. Lett. 107, 135004 (2011)

    Article  ADS  Google Scholar 

  23. Mantica, P., et al.: Ion heat transport studies in JET. Plasma Phys. Control. Fusion 53, 124033 (2011)

    Google Scholar 

  24. Luce, T.C., et al.: Experimental tests of stiffness in the electron and ion energy Transport in the DIII-D Tokamak. In: Proceedings of 24-th fusion energy conference, San-Diego, Rep. EX/P3-18 (2012)

    Google Scholar 

  25. Idomura, Y., Urano, H., Aiba, N., Tokuda, S.: Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulation. Nucl. Fusion 49, 065029 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.N. Dnestrovskij .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dnestrovskij, Y. (2015). Nonlinear Version of the Canonical Profiles Transport Model (CPTM) for Improved Confinement Regimes. In: Self-Organization of Hot Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-06802-2_6

Download citation

Publish with us

Policies and ethics