Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Self-Organization of Hot Plasmas
  • 426 Accesses

Abstract

The basic concepts governing plasma self-organization, i.e. the conservation of the profile shape of specific plasma parameters (pressure, temperature, toroidal rotation velocity) under the influence of external sources of heat, particles and torque are discussed. Examples of the self-organization in tokamaks with circular and elongated cross-sections are shown. The possibility of plasma self-organization in stellarators is considered. A brief review is given of the mathematical models describing the canonical profiles of plasma parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coppi, B.: Nonclassical transport and the ‘principle of profile consistency’. Comment. Plasma Phys. Control Fusion. 5, 261 (1980)

    Google Scholar 

  2. Esiptchuk, Yu.V., Razumova, K.A.: Investigation of plasma confinement on Soviet tokamaks. Plasma Phys.Control Fusion. 28, 1253 (1986)

    Article  ADS  Google Scholar 

  3. Dnestrovskij, Yu.N., Kostomarov, D.P.: Numerical Simulation of Plasmas. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  4. Dnestrovskij, Yu.N., Razumoval, K.A.: Self-consistency of pressure profiles in tokamaks. Nucl. Fusion. 46, 953 (2006)

    Article  ADS  Google Scholar 

  5. Taylor, J.B.: Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139 (1974)

    Article  ADS  Google Scholar 

  6. Kadomtsev, B.B.: Self-organization of tokamak plasma. Sov. J. Plasma Phys. 13, 443 (1987)

    Google Scholar 

  7. Biskamp, D.: Natural current profiles in tokamaks. Comment. Plasma Phys. Control Fusion. 10, 165 (1986)

    Google Scholar 

  8. Hsu, J.Y., Chu, M.S.: The tokamak equilibrium profile. Phys. Fluid. 30, 1221 (1987)

    Article  ADS  Google Scholar 

  9. Minardi, T., Weisen, H.: Stationary magnetic entropy in ohmic tokamak plasmas: experimental evidence from the TCV device. Nucl. Fusion. 41, 113 (2001)

    Article  ADS  Google Scholar 

  10. Minardi, E., Lazzaro, E.: Profile consistency based on the magnetic entropy concept: theory and observation. Nucl. Fusion. 43, 369 (2003)

    Article  ADS  Google Scholar 

  11. Hameiri, E., Bhattacharjee, A.: Entropy production and plasma relaxation. Phys. Rev. A. 35, 768 (1987)

    Article  ADS  Google Scholar 

  12. Phillips, L.: States of minimum dissipation in magnetohydrodynamics: a review. J. Plasma Phys. 56, 531 (1996)

    Article  ADS  Google Scholar 

  13. Zhang, C.: Relaxed states for Ohmically driven tokamaks with an arbitrary aspect ratio. Phys. Plasma. 11, 1445 (2004)

    Article  ADS  Google Scholar 

  14. Bhattacharyya, R., Janaki, M.S.: Dissipative relaxed states in two-fluid plasma with external drive. Phys. Plasma. 11, 5615 (2004)

    Article  ADS  Google Scholar 

  15. Kotschenreuther, M.: Quantitative predictions of tokamak energy confinement from first-principles simulations with kinetic effects. Phys. Plasma. 2, 2381 (1995)

    Article  ADS  Google Scholar 

  16. Nordman, H., Weiland, J., Jarmen, A.: Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping. Nucl. Fusion. 30, 983 (1990)

    Article  Google Scholar 

  17. Waltz, R.E.: A gyro-Landau-fluid transport model. Phys. Plasma. 4, 2482 (1997)

    Article  ADS  Google Scholar 

  18. Idomura, Y.: Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulation. Nucl. Fusion. 49, 065029 (2009)

    Article  ADS  Google Scholar 

  19. Diamond, P.H.: Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks. Nucl. Fusion. 49, 045002 (2009)

    Article  ADS  Google Scholar 

  20. Aydemir, A.Y.: An intrinsic source of radial electric field and edge flows in tokamaks. Nucl. Fusion. 49, 065001 (2009)

    Article  ADS  Google Scholar 

  21. Callen, J.D.: Toroidal rotation in tokamak plasmas. Nucl. Fusion. 49, 085021 (2009)

    Article  ADS  Google Scholar 

  22. Honda, M., Takizuka, T., Fukuyama, A., Yoshida, M., Ozeki, T.: Self-consistent simulation of torque generation by radial current due to fast particles. Nucl. Fusion. 49, 035009 (2009)

    Article  ADS  Google Scholar 

  23. Wagner, F.: W7-AS: one step of the Wendelstein stellarator line. Phys. Plasma. 12 072509 (2005)

    Article  ADS  Google Scholar 

  24. Dnestrovskij, Yu.N., Melnikov, A.V., Pustovitov, V.D.: Approach to canonical pressure profiles in stellarators. Plasma Phys. Control Fusion. 51, 015010 (2009)

    Article  ADS  Google Scholar 

  25. Melnikov, A.V. et al.: Pressure profile shape constancy in L-mode stellarator plasmas. 34-th EPS Conference on Plasma Physics, Warshaw, ECA, vol 31F, Rep. P-2.060 (2007)

    Google Scholar 

  26. Dnestrovskij, Yu.N., Pereverzev, G.V.: Energy confinement in the T-10 tokamak and canonic profile models. Plasma Phys. Control Fusion. 30, 1417 (1988)

    Article  ADS  Google Scholar 

  27. Dnestrovskij, Yu.N. et al.: Transport model of canonical profiles for electron and ion temperatures in tokamaks. Nucl. Fusion. 31, 1877 (1991)

    Article  Google Scholar 

  28. Dnestrovskij, Yu.N., Lysenko, S.E., Tarasyan, K.N.: Improved confinement regimes within the transport model of canonical profiles. Nucl. Fusion. 35, 1047 (1995)

    Article  ADS  Google Scholar 

  29. Dnestrovskij, Yu.N., Dnestrovskij, A.Yu., Lysenko, S.E.: Self-organization of plasma in a tokamak. Plasma Phys. Rep. 31, 529 (2005)

    Article  ADS  Google Scholar 

  30. Dnestrovskij, Yu.N. et al.: Canonical profiles and transport model for the toroidal rotation in tokamaks. Plasma Phys. Control Fusion. 53, 085025 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.N. Dnestrovskij .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dnestrovskij, Y. (2015). Introduction. In: Self-Organization of Hot Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-06802-2_1

Download citation

Publish with us

Policies and ethics