Skip to main content

Unruh-DeWitt Detector on the BTZ Black Hole

  • Conference paper
  • First Online:
Relativity and Gravitation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

We examine an Unruh-DeWitt particle detector coupled to a scalar field in three-dimensional curved spacetime, within first-order perturbation theory. We first obtain a causal and manifestly regular expression for the instantaneous transition rate in an arbitrary Hadamard state. We then specialise to the Bañados-Teitelboim-Zanelli black hole and to a massless conformally coupled field in the Hartle-Hawking vacuum. A co-rotating detector responds thermally in the expected local Hawking temperature, while a freely-falling detector shows no evidence of thermality in regimes that we are able to probe, not even far from the horizon. The boundary condition at the asymptotically anti-de Sitter infinity has a significant effect on the transition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeWitt, B.: Quantum gravity: the new synthesis. In: Hawking, S., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 680–745. Cambridge University Press, Cambridge, New York (1979)

    Google Scholar 

  2. Unruh, W.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976). doi:10.1103/PhysRevD.14.870

    Article  ADS  Google Scholar 

  3. Hodgkinson, L., Louko, J.: Static, stationary and inertial Unruh-DeWitt detectors on the BTZ black hole. Phys. Rev. D 86, 064031 (2012). doi:10.1103/PhysRevD.86.064031

    Article  ADS  Google Scholar 

  4. Fewster, C.: A general worldline quantum inequality. Class. Quantum Grav. 17, 1897 (2000). doi:10.1088/0264-9381/17/9/302

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Junker, W., Schrohe, E.: Adiabatic vacuum states on general space-time manifolds: definition, construction, and physical properties. Ann. Inst. Henri Poincare A 3, 1113 (2002). doi:10.1007/s000230200001

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Kay, B., Wald, R.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon. Phys. Rep. 207, 49 (1991). doi:10.1016/0370-1573(91)90015-E

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Louko, J., Satz, A.: Transition rate of the Unruh-DeWitt detector in curved spacetime. Class. Quantum Grav. 25, 055012 (2008). doi:10.1088/0264-9381/25/5/055012

    Article  ADS  MathSciNet  Google Scholar 

  8. Langlois, P.: Causal particle detectors and topology. Ann. Phys. 321, 2027 (2006). doi:10.1016/j.aop.2006.01.013

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Louko, J., Satz, A.: How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile. Class. Quantum Grav. 23, 6321 (2006). doi:10.1088/0264-9381/23/22/015

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Sriramkumar, L., Padmanabhan, T.: Response of finite time particle detectors in noninertial frames and curved space-time. Class. Quantum Grav. 13, 2061 (1996). doi:10.1088/0264-9381/13/8/005

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Schlicht, S.: Considerations on the Unruh effect: causality and regularization. Class. Quantum Grav. 21, 4647 (2004). doi:10.1088/0264-9381/21/19/011

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Hodgkinson, L., Louko, J.: How often does the Unruh-DeWitt detector click beyond four dimensions? J. Math. Phys. 53, 082301 (2012). doi:10.1063/1.4739453

    Article  ADS  MathSciNet  Google Scholar 

  13. Satz, A.: Then again, how often does the Unruh-DeWitt detector click if we switch it carefully? Class. Quantum Grav. 24, 1719 (2007). doi:10.1088/0264-9381/24/7/003

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Decanini, Y., Folacci, A.: Off-diagonal coefficients of the Dewitt-Schwinger and Hadamard representations of the Feynman propagator. Phys. Rev. D 73, 044027 (2006). doi:10.1103/PhysRevD.73.044027

    Article  ADS  MathSciNet  Google Scholar 

  15. Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the 2+1 black hole. Phys. Rev. D 48, 1506 (1993). doi:10.1103/PhysRevD.48.1506

    Article  ADS  MathSciNet  Google Scholar 

  16. Bañados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69, 1849 (1992). doi:10.1103/PhysRevLett.69.1849

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Carlip, S.: The (2+1)-dimensional black hole. Class. Quantum Grav. 12, 2853 (1995). doi:10.1088/0264-9381/12/12/005

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications in magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957). doi:10.1143/JPSJ.12.570

    Article  ADS  MathSciNet  Google Scholar 

  19. Martin, P., Schwinger, J.: Theory of many-particle systems. 1. Phys. Rev. 115, 1342 (1959). doi:10.1103/PhysRev.115.1342

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hartle, J., Hawking, S.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188 (1976). doi:10.1103/PhysRevD.13.2188

    Article  ADS  Google Scholar 

  21. Israel, W.: Thermo-field dynamics of black holes. Phys. Lett. A 57, 107 (1976). doi:10.1016/0375-9601(76)90178-X

    Article  ADS  MathSciNet  Google Scholar 

  22. Deser, S., Levin, O.: Accelerated detectors and temperature in (anti-) de Sitter spaces. Class. Quantum Grav. 14, L163 (1997). doi:10.1088/0264-9381/14/9/003

    Article  ADS  MathSciNet  Google Scholar 

  23. Deser, S., Levin, O.: Equivalence of Hawking and Unruh temperatures through flat space embeddings. Class. Quantum Grav. 15, L85 (1998). doi:10.1088/0264-9381/15/12/002

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Deser, S., Levin, O.: Mapping Hawking into Unruh thermal properties. Phys. Rev. D 59, 064004 (1999). doi:10.1103/PhysRevD.59.064004

    Article  ADS  MathSciNet  Google Scholar 

  25. Russo, J., Townsend, P.: Accelerating branes and brane temperature. Class. Quantum Grav. 25, 175017 (2008). doi:10.1088/0264-9381/25/17/175017

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

J. Louko thanks the organisers of the “Bits, Branes, Black Holes” programme for hospitality at the Kavli Institute for Theoretical Physics, University of California at Santa Barbara. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 and by the Science and Technology Facilities Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Hodgkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hodgkinson, L., Louko, J. (2014). Unruh-DeWitt Detector on the BTZ Black Hole. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_73

Download citation

Publish with us

Policies and ethics