Skip to main content

Geometrostatics: The Geometry of Static Space-Times

  • Conference paper
  • First Online:
Relativity and Gravitation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

  • 1742 Accesses

Abstract

We present a new geometric approach to the study of static isolated general relativistic systems for which we suggest the name geometrostatics. After describing the setup, we introduce localized formulas for the ADM-mass and ADM/CMC-center of mass of geometrostatic systems. We then explain the pseudo-Newtonian character of these formulas and show that they converge to Newtonian mass and center of mass in the Newtonian limit, respectively, using Ehlers’ frame theory. Moreover, we present a novel physical interpretation of the level sets of the canonical lapse function and apply it to prove uniqueness results. Finally, we suggest a notion of force on test particles in geometrostatic space-times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, time-like curves and the time functional are taken with respect to the static space-time metric \(ds^2=-N^2c^2dt^2+g\) induced by \((M^3,g,N)\).

  2. 2.

    This assumes that the lapse function exists in the first place.

  3. 3.

    Albeit without explicit reference to the speed of light.

  4. 4.

    We note that our discussion of center of mass only applies to systems with non-vanishing mass.

  5. 5.

    Under precise fall-off conditions at spacelike infinity that are satisfied here.

References

  1. Szabados, L.: Quasi-local energy-momentum and angular momentum in general relativity. Living Rev. Relativ. 12(4), lrr-2009-4 (2009). http://www.livingreviews.org/lrr-2009-4

  2. Cederbaum, C.: The Newtonian limit of geometrostatics. Ph.D. thesis, Free University Berlin, Berlin (2011)

    Google Scholar 

  3. Müller zum Hagen, H.: On the analyticity of static vacuum solutions of Einstein’s equations. Proc. Camb. Phil. Soc. 67, 415 (1970). doi:10.1017/S0305004100001237

    Google Scholar 

  4. Choquet-Bruhat, Y., Jork, J.: The Cauchy problem. In: Held, A. (ed.) General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, vol. 1, Chap. 4, pp. 99–172. Plenum Press, New York (1980)

    Google Scholar 

  5. Kennefick, D., O’Murchadha, N.: Weakly decaying asymptotically flat static and stationary solutions to the Einstein equations. Class. Quantum Grav. 12(1), 149 (1995). doi:10.1088/0264-9381/12/1/013

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Arnowitt, R., Deser, S., Misner, C.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(3), 997 (1961). doi:10.1103/PhysRev.122.997

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661 (1986). doi:10.1002/cpa.3160390505

    Article  MATH  MathSciNet  Google Scholar 

  8. Chruściel, P.: On the invariant mass conjecture in general relativity. Commun. Math. Phys. 120, 233 (1988). doi:10.1007/BF01217963

    Article  ADS  MATH  Google Scholar 

  9. Huang, L.H.: Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics. Comm. Math. Phys. 300(2), 331 (2008)

    Article  ADS  Google Scholar 

  10. Huisken, G., Yau, S.T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124, 281 (1996). doi:10.1007/s002220050054

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Metzger, J.: Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature. J. Differ. Geom. 77(2), 201 (2007)

    MATH  MathSciNet  Google Scholar 

  12. Ehlers, J.: Examples of Newtonian limits of relativistic spacetimes. Class. Quantum Grav. 14, A119 (1997). doi:10.1088/0264-9381/14/1A/010

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Cederbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cederbaum, C. (2014). Geometrostatics: The Geometry of Static Space-Times. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_5

Download citation

Publish with us

Policies and ethics