Skip to main content

A Cosmological Concordance Model with Particle Creation

  • Conference paper
  • First Online:
  • 1722 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

A constant-rate creation of dark particles in the late-time FLRW spacetime provides a cosmological model in accordance with precise observational tests. The matter creation backreaction implies in this context a vacuum energy density scaling linearly with the Hubble parameter, which is consistent with the vacuum expectation value of the QCD condensate in a low-energy expanding spacetime. Both the cosmological constant and coincidence problems are alleviated in this scenario. We discuss the cosmological model that arises in this context and present a joint analysis of observations of the first acoustic peak in the cosmic microwave background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show that a good concordance is obtained, albeit with a higher value of the present matter abundance than in the standard model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Strictly speaking, this result is only exact if we neglect the conserved baryons in the balance equations. Since baryons represent only about \(5\,\%\) of the total energy content, this can be considered a good approximation.

References

  1. Ford, L.: Quantum vacuum energy in general relativity. Phys. Rev. D 11, 3370 (1975). doi:10.1103/PhysRevD.11.3370

    Article  ADS  Google Scholar 

  2. Dowker, J., Critchley, R.: Effective Lagrangian and energy momentum tensor in de Sitter space. Phys. Rev. D 13, 3224 (1976). doi:10.1103/PhysRevD.13.3224

    Article  ADS  MathSciNet  Google Scholar 

  3. Davies, P.: Singularity avoidance and quantum conformal anomalies. Phys. Lett. B 68, 402 (1977). doi:10.1016/0370-2693(77)90504-4

    Article  ADS  Google Scholar 

  4. Starobinsky, A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980). doi:10.1016/0370-2693(80)90670-X

    Article  ADS  Google Scholar 

  5. Schützhold, R.: Small cosmological constant from the QCD trace anomaly? Phys. Rev. Lett. 89, 081302 (2002). doi:10.1103/PhysRevLett.89.081302

    Article  ADS  Google Scholar 

  6. Klinkhamer, F., Volovik, G.: Gluonic vacuum, q-theory, and the cosmological constant. Phys. Rev. D 79, 063527 (2009). doi:10.1103/PhysRevD.79.063527

    Article  ADS  Google Scholar 

  7. Urban, F., Zhitnitsky, A.: The cosmological constant from the ghost: A toy model. Phys. Rev. D 80, 063001 (2009). doi:10.1103/PhysRevD.80.063001

    Article  ADS  Google Scholar 

  8. Urban, F., Zhitnitsky, A.: The cosmological constant from the QCD Veneziano ghost. Phys. Lett. B 688, 9 (2010). doi:10.1016/j.physletb.2010.03.080

    Article  ADS  Google Scholar 

  9. Urban, F., Zhitnitsky, A.: The QCD nature of dark energy. Nucl. Phys. B 835, 135 (2010). doi:10.1016/j.nuclphysb.2010.04.001

    Article  ADS  MATH  Google Scholar 

  10. Ohta, N.: Dark energy and QCD ghost. Phys. Lett. B 695, 41 (2011). doi:10.1016/j.physletb.2010.11.044

    Article  ADS  Google Scholar 

  11. Holdom, B.: From confinement to dark energy. Phys. Lett. B 697, 351 (2011). doi:10.1016/j.physletb.2011.02.024

    Article  ADS  Google Scholar 

  12. Alcaniz, J., Borges, H., Carneiro, S., et al.: A cosmological concordance model with dynamical vacuum term. Phys. Lett. B 716, 165 (2012). doi:10.1016/j.physletb.2012.08.014

    Article  ADS  Google Scholar 

  13. Gibbons, G., Hawking, S.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977). doi:10.1103/PhysRevD.15.2738

    Article  ADS  MathSciNet  Google Scholar 

  14. Mena Marugán, G., Carneiro, S.: Holography and the large number hypothesis. Phys. Rev. D 65, 087303 (2002). doi:10.1103/PhysRevD.65.087303

  15. Bjorken, J.: Emergent photons and gravitons: the problem of vacuum structure. In: Kostelecký, V. (ed.) CPT and Lorentz Symmetry, pp. 1–5. World Scientific Publishing, Singapore, Hackensack, NJ (2011). doi:10.1142/9789814327688_0001

  16. Borges, H., Carneiro, S.: Friedmann cosmology with decaying vacuum density. Gen. Relativ. Gravit. 37, 1385 (2005). doi:10.1007/s10714-005-0122-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Pigozzo, C., Dantas, M., Carneiro, S., Alcaniz, J.: Observational tests for \(\Lambda \) (t)CDM cosmology. J. Cosmol. Astropart. Phys. 2011(08), 022 (2011). doi: 10.1088/1475-7516/2011/08/022

    Article  ADS  Google Scholar 

  18. Carneiro, S., Dantas, M., Pigozzo, C., Alcaniz, J.: Observational constraints on late-time \(\Lambda (t)\) cosmology. Phys. Rev. D 77, 083504 (2008). doi: 10.1103/PhysRevD.77.083504

    Article  ADS  Google Scholar 

  19. Carneiro, S., Pigozzo, C., Borges, H., Alcaniz, J.: Supernova constraints on decaying vacuum cosmology. Phys. Rev. D 74, 023532 (2006). doi:10.1103/PhysRevD.74.023532

    Article  ADS  Google Scholar 

  20. Borges, H., Carneiro, S., Fabris, J., Pigozzo, C.: Evolution of density perturbations in decaying vacuum cosmology. Phys. Rev. D 77, 043513 (2008). doi:10.1103/PhysRevD.77.043513

    Article  ADS  Google Scholar 

  21. Zimdahl, W., Borges, H., Carneiro, S., Fabris, J., Hipolito-Ricaldi, W.: Non-adiabatic perturbations in decaying vacuum cosmology. J. Cosmol. Astropart. Phys. 2011(04), 028 (2011). doi:10.1088/1475-7516/2011/04/028

    Article  Google Scholar 

  22. Hansen, B., Brewer, J., Fahlman, G., et al.: The white dwarf cooling sequence of the globular cluster messier 4. Astrophys. J. 574, L155 (2002). doi:10.1086/342528

    Article  ADS  Google Scholar 

  23. Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, New York (2009)

    Book  Google Scholar 

  24. Carneiro, S., Tavakol, R.: On vacuum density, the initial singularity and dark energy. Gen. Relativ. Gravit. 41, 2287 (2009). doi:10.1007/s10714-009-0846-2

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Lima, J., Germano, A., Abramo, L.: FRW type cosmologies with adiabatic matter creation. Phys. Rev. D 53, 4287 (1996). doi:10.1103/PhysRevD.53.4287

    Article  ADS  Google Scholar 

  26. Zimdahl, W., Schwarz, D., Balakin, A., Pavon, D.: Cosmic anti-friction and accelerated expansion. Phys. Rev. D 64, 063501 (2001). doi:10.1103/PhysRevD.64.063501

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Carneiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Alcaniz, J.S., Borges, H.A., Carneiro, S., Fabris, J.C., Pigozzo, C., Zimdahl, W. (2014). A Cosmological Concordance Model with Particle Creation. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_46

Download citation

Publish with us

Policies and ethics