Skip to main content

On the Stability Operator for MOTS and the ‘Core’ of Black Holes

  • Conference paper
  • First Online:
Relativity and Gravitation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

Small deformations of marginally (outer) trapped surfaces are considered by using their stability operator. In the case of spherical symmetry, one can use these deformations on any marginally trapped round sphere to prove several interesting results. The concept of ‘core’ of a black hole is introduced: it is a minimal region that one should remove from the spacetime in order to get rid of all possible closed trapped surfaces. In spherical symmetry one can prove that the spherical marginally trapped tube is the boundary of a core. By using a novel formula for the principal eigenvalue of the stability operator, I will argue how to pursue similar results in general black-hole spacetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashtekar, A., Galloway, G.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9, 1 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativ. 7(10), lrr-2004-10 (2004). http://www.livingreviews.org/lrr-2004-10

  3. Senovilla, J.: Classification of spacelike surfaces in spacetime. Class. Quantum Grav. 24, 3091 (2007). doi:10.1088/0264-9381/24/11/020

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Senovilla, J.: Trapped surfaces. Int. J. Mod. Phys. D 20, 2139 (2011). doi:10.1142/S0218271811020354

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  6. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005). doi:10.1103/PhysRevLett.95.111102

    Article  ADS  Google Scholar 

  7. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hawking, S., Ellis, G.: The Large Scale Structure of Space–Time. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  9. Bengtsson, I., Senovilla, J.: Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D 83, 044012 (2011). doi:10.1103/PhysRevD.83.044012

    Article  ADS  Google Scholar 

  10. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys. 290, 941 (2009). doi:10.1007/s00220-008-0723-y

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Åman, J., Bengtsson I., Senovilla J.: Where are the trapped surfaces? In: Lazkoz, R., Vera, R. (eds.) Gravitation in the Large, J. Phys.: Conf. Ser., vol. 229, p. 012004 (IOP, 2010). doi: 10.1088/1742-6596/229/1/012004

  12. Bengtsson, I., Senovilla, J.: Note on trapped surfaces in the Vaidya solution. Phys. Rev. D 79, 024027 (2009). doi:10.1103/PhysRevD.79.024027

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

Supported by grants FIS2010-15492 (MICINN), GIU06/37 (UPV/EHU) and P09-FQM- 4496 (J. Andalucía–FEDER) and UFI 11/55 (UPV/EHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. M. Senovilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Senovilla, J.M.M. (2014). On the Stability Operator for MOTS and the ‘Core’ of Black Holes. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_27

Download citation

Publish with us

Policies and ethics