Skip to main content

2.5PN Kick from Black-Hole Binaries in Circular Orbit: Nonspinning Case

  • Conference paper
  • First Online:
Relativity and Gravitation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depend on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both mass octupole and current quadrupole have the same parity.

  2. 2.

    Note that the expressions for the linear momentum flux (2) and that for the recoil velocity (7) are even applicable to compact binary systems involving NSs as components. However, the plunge computations presented here assume that both the components of the binary are BHs.

References

  1. Harrison, E.R., Tademaru, E.: Acceleration of pulsars by asymmetric radiation. Astrophys. J. 201, 447 (1975). doi:10.1086/153907

    Article  ADS  Google Scholar 

  2. Peres, A.: Classical radiation recoil. Phys. Rev. 128, 2471 (1962). doi:10.1103/PhysRev.128.2471

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Hughes, S.A., Favata, M., Holz, D.E.: How black holes get their kicks: radiation recoil in binary black hole mergers. In: Merloni, A., Nayakshin, S., Sunyaev, R.A. (eds.) Growing Black Holes: Accretion in a Cosmological Context, pp. 333–339 (2005). doi:10.1007/11403913_64

  4. Merritt, D., Milosavljević, M., Favata, M., Hughes, S.A., Holz, D.E.: Consequences of gravitational radiation recoil. Astrophys. J. Lett. 607, L9 (2004). doi:10.1086/421551

    Article  ADS  Google Scholar 

  5. Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 5, lrr-2002-3 (2002). http://www.livingreviews.org/lrr-2002-3

  6. Sasaki, M., Tagoshi, H.: Analytic black hole perturbation approach to gravitational radiation. Living Rev. Relativ. 6, lrr-2003-6 (2003). http://www.livingreviews.org/lrr-2003-6

  7. Pretorius, F.: Binary Black Hole Coalescence. In: Colpi, M., et al. (eds.) Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescense, Astrophysics and Space Science Library, vol. 359, pp. 305–370. Springer, Canopus Publishing Limited, Dordrecht, Bristol (2009)

    Chapter  Google Scholar 

  8. Centrella, J., Baker, J.G., Kelly, B.J., van Meter, J.R.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010). doi:10.1103/RevModPhys.82.3069

    Article  ADS  MATH  Google Scholar 

  9. Fitchett, M.J.: The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system. Mon. Not. R. Astron. Soc. 203, 1049 (1983)

    ADS  MATH  Google Scholar 

  10. Wiseman, A.G.: Coalescing binary systems of compact objects to (post)5/2 Newtonian order. 2. Higher order wave forms and radiation recoil. Phys. Rev. D 46, 1517 (1992). doi:10.1103/PhysRevD.46.1517

    Article  ADS  Google Scholar 

  11. Blanchet, L., Qusailah, M.S.S., Will, C.M.: Gravitational recoil of inspiraling black hole binaries to second post-Newtonian order. Astrophys. J. 635, 508 (2005). doi:10.1086/497332

    Article  ADS  Google Scholar 

  12. Mishra, C.K., Arun, K.G., Iyer, B.R.: 2.5PN linear momentum flux from inspiralling compact binaries in quasicircular orbits and associated recoil: nonspinning case. Phys. Rev. D 85(4), 044021 (2012). doi:10.1103/PhysRevD.85.044021

  13. Thorne, K.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299 (1980). doi:10.1103/RevModPhys.52.299

    Article  ADS  MathSciNet  Google Scholar 

  14. Blanchet, L., Faye, G., Iyer, B.R., Sinha, S.: The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits. Class. Quantum Grav. 25(16), 165003 (2008). doi:10.1088/0264-9381/25/16/165003

    Article  ADS  Google Scholar 

  15. Kidder, L.: Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit. Phys. Rev. D 77, 044016 (2008). doi:10.1103/PhysRevD.77.044016

    Article  ADS  Google Scholar 

  16. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). doi:10.1103/PhysRevD.59.084006

    Article  ADS  MathSciNet  Google Scholar 

  17. Buonanno, A., Damour, T.: Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000). doi:10.1103/PhysRevD.62.064015

    Article  ADS  Google Scholar 

  18. Damour, T., Iyer, B.R., Sathyaprakash, B.S.: Comparison of search templates for gravitational waves from binary inspiral. Phys. Rev. D 63(4), 044023 (2001/2005). doi:10.1103/PhysRevD.63.044023. Erratum-ibid. D 72 029902 (2005)

  19. Blanchet, L.: Energy losses by gravitational radiation in inspiraling compact binaries to 5/2 post-Newtonian order. Phys Rev. D 54(1417), (1996). doi:10.1103/PhysRevD.54.1417. Erratum-ibid. 71, 129904(E) (2005)

  20. Arun, K.G., Blanchet, L., Iyer, B.R., Qusailah, M.S.S.: The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits. Class. Quantum Grav. 21(3771), (2004). doi:10.1088/0264-9381/21/15/010. Erratum-ibid. 22, 3115 (2005)

  21. Kidder, L.E., Blanchet, L., Iyer, B.R.: A note on the radiation reaction in the 2.5PN waveform from inspiralling binaries in quasi-circular orbits. Class. Quantum Grav. 24, 5307 (2007). doi:10.1088/0264-9381/24/20/N01

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala R. Iyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mishra, C.K., Arun, K.G., Iyer, B.R. (2014). 2.5PN Kick from Black-Hole Binaries in Circular Orbit: Nonspinning Case. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_21

Download citation

Publish with us

Policies and ethics