Skip to main content

Non-Linear Effects in Non-Kerr Spacetimes

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

There is a chance that the spacetime around massive compact objects which are expected to be black holes is not described by the Kerr metric, but by a metric which can be considered as a perturbation of the Kerr metric. These non-Kerr spacetimes are also known as bumpy black hole spacetimes. We expect that, if some kind of a bumpy black hole exists, the spacetime around it should possess some features which will make the divergence from a Kerr spacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko–Novikov spacetime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ryan, F.: Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. Phys. Rev. D 52, 5707 (1995). doi:10.1103/PhysRevD.52.5707

    Article  ADS  Google Scholar 

  2. Ryan, F.: Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral. Phys. Rev. D 56, 1845 (1997). doi:10.1103/PhysRevD.56.1845

    Article  ADS  Google Scholar 

  3. Collins, N., Hughes, S.: Towards a formalism for mapping the spacetimes of massive compact objects: bumpy black holes and their orbits. Phys. Rev. D 69, 124022 (2004). doi:10.1103/PhysRevD.69.124022

    Article  ADS  MathSciNet  Google Scholar 

  4. Amaro-Seoane, P., Aoudia, S., Babak, S., et al.: Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Grav. 29, 124016 (2012). doi:10.1088/0264-9381/29/12/124016

    Article  ADS  Google Scholar 

  5. Bambi, C.: Testing the Kerr black hole hypothesis. Mod. Phys. Lett. A 26, 2453 (2011). doi:10.1142/S0217732311036929

    Article  ADS  MathSciNet  Google Scholar 

  6. Johannsen, T.: Testing the no-hair theorem with Sgr A*. Adv. Astron. 2012, 486750 (2012). doi:10.1155/2012/486750

    Article  Google Scholar 

  7. Carter, B.: Global Structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968). doi:10.1103/PhysRev.174.1559

    Article  ADS  MATH  Google Scholar 

  8. Markakis, C.: Constants of motion in stationary axisymmetric gravitational fields. ArXiv e-prints arXiv:1202.5228 [astro-ph.SR] (2012)

  9. Brink, J.: Formal solution of the fourth order Killing equations for stationary axisymmetric vacuum spacetimes. Phys. Rev. D 84, 104015 (2011). doi:10.1103/PhysRevD.84.104015

    Article  ADS  Google Scholar 

  10. Apostolatos, T., Lukes-Gerakopoulos, G., Contopoulos, G.: How to observe a non-Kerr spacetime using gravitational waves. Phys. Rev. Lett. 103, 111101 (2009). doi:10.1103/PhysRevLett.103.111101

    Article  ADS  MathSciNet  Google Scholar 

  11. Lukes-Gerakopoulos, G., Apostolatos, T., Contopoulos, G.: Observable signature of a background deviating from the Kerr metric. Phys. Rev. D 81, 124005 (2010). doi:10.1103/PhysRevD.81.124005

    Article  ADS  Google Scholar 

  12. Contopoulos, G., Lukes-Gerakopoulos, G., Apostolatos, T.: Orbits in a non-Kerr dynamical system. Int. J. Bifurcat. Chaos 21, 2261 (2011). doi:10.1142/S0218127411029768

    Article  Google Scholar 

  13. Manko, V., Novikov, I.: Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments. Class. Quantum Grav. 9, 2477 (1992). doi:10.1088/0264-9381/9/11/013

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Gair, J., Li, C., Mandel, I.: Observable properties of orbits in exact bumpy spacetimes. Phys. Rev. D 77, 024035 (2008). doi:10.1103/PhysRevD.77.024035

    Article  ADS  Google Scholar 

  15. G. Contopoulos, Order and chaos in dynamical astronomy. Astronomy and astrophysics library (Springer, 2002).

    Google Scholar 

  16. Gair, J.R., Glampedakis, K.: Improved approximate inspirals of test bodies into Kerr black holes. Phys. Rev. D 73(6), 064037 (2006). doi:10.1103/PhysRevD.73.064037

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

G. L-G is supported by the DFG grant SFB/Transregio 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Lukes-Gerakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lukes-Gerakopoulos, G., Contopoulos, G., Apostolatos, T.A. (2014). Non-Linear Effects in Non-Kerr Spacetimes. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_16

Download citation

Publish with us

Policies and ethics