Skip to main content

Superradiance or Total Reflection?

  • Conference paper
  • First Online:
Relativity and Gravitation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 157))

Abstract

Numerical evolution of massless scalar fields on Kerr background is studied. The initial data is chosen to have compact support separated from the ergoregion and to yield nearly monochromatic incident wave packets. The initial data is also tuned to maximize the effect of superradiance. We give evidence indicating that instead of the anticipated energy extraction from the black hole the incident radiation fails to reach the ergoregion and instead it suffers a nearly perfect reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that on all the included 2-dimensional plots the indicated quantities are integrated with respect to the radial degrees of freedom.

References

  1. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. ArXiv e-prints arXiv:0908.2265 (2009)

  2. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \(|a|\ll \) M or axisymmetry. ArXiv e-prints arXiv:1010.5132 [gr-qc] (2010)

  3. Misner, C.W.: Interpretation of gravitational-wave observations. Phys. Rev. Lett. 28, 994 (1972). doi:10.1103/PhysRevLett.28.994

    Article  ADS  Google Scholar 

  4. Zel’dovich, Y.B.: Amplification of cylindrical electromagnetic waves reflected from a rotating body. Zh. Eksp. Teor. Fiz. 62, 2076 (1971)

    Google Scholar 

  5. Starobinskiǐ, A.A.: Amplification of waves during reflection from a rotating ”black hole”. Zh. Eksp. Teor. Fiz. 64, 48 (1973)

    ADS  Google Scholar 

  6. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  7. Teukolsky, S.: Rotating black holes—separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29, 1114 (1972). doi:10.1103/PhysRevLett.29.1114

    Article  ADS  Google Scholar 

  8. Press, W.H., Teukolsky, S.A.: Perturbations of a rotating black hole. II. Dynamical stability of the kerr metric. Astrophys. J. 185, 649 (1973). doi:10.1086/152445

    Article  ADS  MathSciNet  Google Scholar 

  9. Bekenstein, J.D.: Extraction of energy and charge from a black hole. Phys Rev. D 7, 949 (1973). doi:10.1103/PhysRevD.7.949

    Article  ADS  MathSciNet  Google Scholar 

  10. Finster, F., Kamran, N., Smoller, J., Yau, S.T.: A rigorous treatment of energy extraction from a rotating black hole. Commun. Math. Phys. 287, 829 (2009). doi:10.1007/s00220-009-0730-7

  11. Carter, B.: Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280 (1968)

    MATH  Google Scholar 

  12. Wald, R.M.: Note on the stability of the Schwarzschild metric. J. Math. Phys. 20, 1056 (1979). doi:10.1063/1.524181

    Article  ADS  MathSciNet  Google Scholar 

  13. Kay, B.S., Wald, R.M.: Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere. Class. Quantum Gravity 4, 893 (1987). doi:10.1088/0264-9381/4/4/022

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Krivan, W., Laguna, P., Papadopoulos, P., Andersson, N.: Dynamics of perturbations of rotating black holes. Phys Rev. D 56, 3395 (1997). doi:10.1103/PhysRevD.56.3395

    Article  ADS  MathSciNet  Google Scholar 

  15. Andersson, N., Laguna, P., Papadopoulos, P.: Dynamics of scalar fields in the background of rotating black holes. II. A note on superradiance. Phys. Rev. D 58(8), 087503 (1998). doi:10.1103/PhysRevD.58.087503

  16. The GridRipper 3+1d PDE solver. http://www.rmki.kfki.hu/gridripper

  17. Csizmadia, P., László, A., Rácz, I.: On the use of multipole expansion in time evolution of nonlinear dynamical systems and some surprises related to superradiance. Class. Quantum Gravity 30(1), 015010 (2013). doi:10.1088/0264-9381/30/1/015010

    Article  ADS  Google Scholar 

  18. Csizmadia, P., László, A., Rácz, I.: Linear waves on fixed Kerr background and their relevance in jet formation. J. Phys. Conf. Ser. 218(1), 012007 (2010). doi:10.1088/1742-6596/218/1/012007

    Article  ADS  Google Scholar 

  19. Wald, R.: Gedanken experiments to destroy a black hole. Ann. Phys. 82, 548 (1974). doi:10.1016/0003-4916(74)90125-0

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by OTKA grant K67942.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Rácz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

László, A., Rácz, I. (2014). Superradiance or Total Reflection?. In: Bičák, J., Ledvinka, T. (eds) Relativity and Gravitation. Springer Proceedings in Physics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-06761-2_15

Download citation

Publish with us

Policies and ethics