Skip to main content

Equilibrium

  • Chapter
  • First Online:
Nonequilibrium and Irreversibility

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

Mechanical systems in interaction with thermostats will be modeled by evolution equations describing the time evolution of the point \(x=( X,\dot{X})=x_1,\ldots ,x_N,\dot{x}_1,\ldots ,\dot{x}_N)\in R^{6N}\) representing positions and velocities of all particles in the ambient space \(R^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes the observations can be triggered by a clock arm indicating a chosen position on the dial: in this case the phase space will be \(R^{6N+1}\) and the space \(\varXi \) will coincide with \(R^{6N}\). But in what follows we shall consider measurements triggered by some observable taking a prefixed value, unless otherwise stated.

  2. 2.

    In the case of systems described in continuous time the data show always a \(0\)-Lyapunov exponent and this remains true it the observations are made at fixed time intervals

  3. 3.

    The meaning of the word was explained by Clausius himself [11, p. 390]: “I propose to name the quantity \(S\) the entropy of the system, after the Greek word “the transformation” [12] , [in German Verwandlung]. I have deliberately chosen the word entropy to be as similar as possible to the word energy: the two quantities to be named by these words are so closely related in physical significance that a certain similarity in their names appears to be appropriate.” More precisely the German word really employed by Clausius [11, p. 390], is Verwandlungsinhalt or “transformation content”.

  4. 4.

    The value of \(D\) depends sensitively on the assumption that the atomic interaction potential is proportional to \(r^{-4}\) (hence at constant pressure \(D\) varies as \(T^2\)). The agreement with the few experimental data available (1866 and 1873) induced Maxwell to believe that the atomic interaction would be proportional to \(r^{-4}\) (hard core interaction would lead to \(D\) varying as \(T^{\frac{3}{2}}\) as in his earlier work [15]).

  5. 5.

    For a precise formulation see p. 18.

  6. 6.

    Boltzmann [18], see also Sect. 6.1.

  7. 7.

    From [19, p. 227] Differential equations require, just as atomism does, an initial idea of a large finite number of numerical values and points ...... Only afterwards it is maintained that the picture never represents phenomena exactly but merely approximates them more and more the greater the number of these points and the smaller the distance between them. Yet here again it seems to me that so far we cannot exclude the possibility that for a certain very large number of points the picture will best represent phenomena and that for greater numbers it will become again less accurate, so that atoms do exist in large but finite number. For other relevant quotations see Sect. 1.1 and 5.2 in [16].

  8. 8.

    Today it seems unwelcome because we have adjusted, under social pressure, to think that chaotic motions are non periodic and ubiquitous, and their images fill both scientific and popular magazines. It is interesting however that the ideas and methods developed by the mentioned Authors have been the basis of the chaotic conception of motion and of the possibility of reaching some understating of it. See also Sects. 3.6, 3.7 below.

  9. 9.

    The recurrence time.

  10. 10.

    For Clausius’ view see p. 8 and for Maxwell’s view see footnote p. viii in the Introduction.

  11. 11.

    The second fundamental theorem is not the second law but a logical consequence of it, see Sect. 6.1.

  12. 12.

    From Eq. (1.4.3): \(-\delta (\overline{K} +\overline{V}) +2\delta \overline{K}+\delta \overline{{\widetilde{V}}}=-2\overline{K}\delta \log i\); i.e. \(-\delta Q=-2\delta \overline{K} -2\overline{K}\log i\), hence \(\frac{\delta Q}{\overline{K}}=2\delta \log (\overline{K} i)\).

  13. 13.

    This is an important point: the condition Eq. (1.4.3) does not give to the periodic orbits describing the state of the system any variational property (of minimum or maximum): the consequence is that it does not imply \(\int \frac{\delta Q}{T}\le 0\) in the general case of a cycle but only \(\int \frac{\delta Q}{T}=0\) in the (considered) reversible cases of cycles. This comment also applies to Clausius’ derivation. The inequality seems to be derivable only by applying the second law in Clausius formulation. It proves existence of entropy, however, see comment at p. 137.

  14. 14.

    Assume here for simplicity the gas to be monoatomic.

  15. 15.

    For there will always exist configurations for which \(H(f)\) or any other extension of it decreases, although this can possibly happen only for a very short time (of “human size”) to start again increasing forever approaching a constant (until a time \(T_\infty \) is elapsed and in the unlikely event that the system is still enclosed in its container where it has remained undisturbed and if there is still anyone around to care).

  16. 16.

    “The entropy of the universe is always increasing” is not a very good statement of the second law [47, Sect. 44.12] The second law in Kelvin-Planck’s version “A process whose only net result is to take heat from a reservoir and convert it to work is impossible”; and entropy is defined as a function \(S\) such that if heat \(\Delta Q\) is added reversibly to a system at temperature \(T\), the increase in entropy of the system is \(\Delta S=\frac{\Delta Q}{T}\) [47, 48]. The Clausius’ formulation of the second law is “It is impossible to construct a device that, operating in a cycle will produce no effect other than the transfer of heat from a cooler to a hotter body” [48, p. 148]. In both cases the existence of entropy follows as a theorem, Clausius’ “fundamental theorem of the theory of heat”, here called “heat theorem”.

  17. 17.

    Like temperature differences imposed on the boundaries.

References

  1. Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bonetto, F., Gallavotti, G., Giuliani, A., Zamponi, F.: Chaotic hypothesis, fluctuation theorem and singularities. J. Stat. Phys. 123, 39–54 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Lorenz, E.: Deterministic non periodic flow. J Atmos Sci 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  4. Lucretius, T.: De Rerum Natura. Rizzoli, Milano (1976)

    Google Scholar 

  5. S.G. Brush. History of Modern Physical Sciences, Vol. I: The Kinetic Theory of Gases. Imperial College Press, London (2003)

    Google Scholar 

  6. Avogadro, A.: Essai d’une manière de determiner les masses relatives des molecules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. Journal de Physique, de Chimie et d’Histoire naturelle, translated in http://lem.ch.unito.it/chemistry/essai.html. 73, 58–76 (1811)

  7. Brush, S.G.: The Kind of Motion that We Call Heat (I, II). North Holland, Amsterdam (1976)

    Google Scholar 

  8. Mossotti, O.F.: Sur les forces qui régissent la constitution intérieure des corps. Stamperia Reale, Torino (1836)

    Google Scholar 

  9. Clausius, R.: On the motive power of heat, and on the laws which can be deduced from it for the theory of heat. Philos. Mag. 2, 1–102 (1851)

    Google Scholar 

  10. Carnot, S.: Réflections sur la puissance motrice du feu et sur les machines propres a développer cette puissance. Bachelier, reprint Gabay, 1990, Paris (1824)

    Google Scholar 

  11. Clausius, R.: Über einige für anwendung bequeme formen der hauptgleichungen der mechanischen wärmetheorie. Annalen der Physik und Chemie 125, 353–401 (1865)

    Article  ADS  Google Scholar 

  12. Lidddell, H.G., Scott, R.: A Greek-English Lexicon. Oxford University Press, Oxford (1968)

    Google Scholar 

  13. Krönig, A.: Grundzüge einer Theorie der Gase. Annalen der Physik und, Chemie, XCIX:315–322 (1856)

    Google Scholar 

  14. Clausius, R.: The nature of the motion which we call heat. Philos. Mag. 14, 108–127 (1865)

    Google Scholar 

  15. Maxwell, J.C.: Illustrations of the dynamical theory of gases. In: Niven, W.D. (ed.) The Scientific Papers of J.C. Maxwell, vol. 1. Cambridge University Press, Cambridge (1964)

    Google Scholar 

  16. Gallavotti, G.: Statistical Mechanics: A Short Treatise. Springer, Berlin (2000)

    Google Scholar 

  17. Maxwell, J.C.: The Scientific Papers of J.C. Maxwell. In: Niven, W.D. (ed.), vols. 1, 2. Cambridge University Press, Cambridge (1964)

    Google Scholar 

  18. Boltzmann, L.: Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie, volume 1, #2 of Wissenschaftliche Abhandlungen, ed. F. Hasenöhrl. Chelsea, New York (1968)

    Google Scholar 

  19. Boltzmann, L.: Theoretical Physics and Philosophical Writings. In: Mc Guinness, B. (ed.), Reidel, Dordrecht (1974)

    Google Scholar 

  20. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen.In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, #22. Chelsea, New York (1968)

    Google Scholar 

  21. Maxwell, J.C.: On the dynamical theory of gases. In: Niven, W.D. (ed.) The Scientific Papers of J.C. Maxwell, vol. 2. Cambridge University Press, Cambridge (1964)

    Google Scholar 

  22. Clausius, R.: Ueber die zurückführung des zweites hauptsatzes der mechanischen wärmetheorie und allgemeine mechanische prinzipien. Annalen der Physik 142, 433–461 (1871)

    Google Scholar 

  23. Boltzmann, L.: Über das Wärmegleichgewicht zwischen mehratomigen Gasmolekülen. In: Hasenöhrl. F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, #18. Chelsea, New York (1968)

    Google Scholar 

  24. Boltzmann, L.: Einige allgemeine sätze über Wärmegleichgewicht. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, #19. Chelsea, New York (1968)

    Google Scholar 

  25. Boltzmann, L.: Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht des lebendigen Kraft. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, #20. Chelsea, New York (1968)

    Google Scholar 

  26. Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleichgewicht. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 2, #42. Chelsea, New York (1968)

    Google Scholar 

  27. Boltzmann, L.: Über die Eigenshaften monozyklischer und anderer damit verwandter Systeme. Wissenschaftliche Abhandlungen, vol. 3, #73. Chelsea, New York, 1968 (1884)

    Google Scholar 

  28. Lagrange, J.L.: Oeuvres. Gauthiers-Villars, Paris (1867–1892)

    Google Scholar 

  29. Clausius, R.: Bemerkungen zu der prioritätreclamation des hrn. boltzmann. Annalen der Physik 144, 265–280 (1872)

    Google Scholar 

  30. Gallavotti, G.: The Elements of Mechanics (II nd edn). http://ipparco.roma1.infn.it, Roma (I edition was Springer 1984) (2008)

  31. Boltzmann, L.: Bemerkungen über einige Probleme der mechanischen Wärmetheorie. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 2, #39. Chelsea, New York (1877)

    Google Scholar 

  32. Boltzmann, L.: Lösung eines mechanischen Problems. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, #6. Chelsea, New York (1968)

    Google Scholar 

  33. Helmholtz, H.: Studien zur Statistik monocyklischer Systeme. Wissenschaftliche Abhandlungen, vol. III. Barth, Leipzig (1895)

    Google Scholar 

  34. Gallavotti, G.: Quasi periodic motions from Hypparchus to Kolmogorov. Rendiconti Accademia dei Lincei, Matematica e applicazioni, 12, 125–152, (2001) e chao-dyn/9907004

    Google Scholar 

  35. Boltzmann, L.: Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, #5. Chelsea, New York (1968)

    Google Scholar 

  36. Bach, A.: Boltzmann’s probability distribution of 1877. Arch. Hist. Exact. Sci. 41, 1–40 (1990)

    MATH  MathSciNet  Google Scholar 

  37. Gibbs, J.: Elementary principles in statistical mechanics. Schribner, Cambridge (1902)

    Google Scholar 

  38. Boltzmann, L.: Zusammenhang zwischen den Sätzen über das Verhalten mehratomiger Gasmoleküle mit Jacobi’s Prinzip des letzten Multiplicators. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. 1, p. 259. Chelsea, New York (1968)

    Google Scholar 

  39. Gallavotti, G., Bonetto, F., Gentile, G.: Aspects of the ergodic, qualitative and statistical theory of motion. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  40. Lanford, O.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications, vol. 38, pp. 1–111. Lecture Notes in Physics, Berlin (1974)

    Google Scholar 

  41. Spohn, H.: On the integrated form of the BBGKY hierarchy for hard spheres. arxiv: math-ph/0605068, pp. 1–19, (2006)

    Google Scholar 

  42. Thomson, W.: The kinetic theory of dissipation of energy. Proceedings of the Royal Society of Edinburgh 8, 325–328 (1874)

    MATH  Google Scholar 

  43. Boltzmann, L.: Lectures on gas theory. English edition annotated by S. Brush. University of California Press, Berkeley (1964)

    Google Scholar 

  44. Goldstein, S., Lebowitz, J.L.: On the (boltzmann) entropy of nonequilibrium systems. Physica D 193, 53–66 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Garrido, P.L., Goldstein, S., Lebowitz, J.L.: Boltzmann entropy for dense fluids not in local equilibrium. Phys. Rev. Lett. 92, 050602 (+4) (2005)

    Google Scholar 

  46. Gallavotti, G.: Counting phase space cells in statistical mechanics. Commun. Math. Phys. 224, 107–112 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures in Physics, vol. I, II, III. Addison-Wesley, New York (1963)

    Google Scholar 

  48. Zemansky, M.W.: Heat and Thermodynamics. McGraw-Hill, New York (1957)

    MATH  Google Scholar 

  49. Uffink, J.: Boltzmann’s work in statistical physics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 2008 edition (2008)

    Google Scholar 

  50. Gallavotti, G.: Entropy, thermostats and chaotic hypothesis. Chaos 16, 043114 (+6) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gallavotti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallavotti, G. (2014). Equilibrium. In: Nonequilibrium and Irreversibility. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06758-2_1

Download citation

Publish with us

Policies and ethics