Skip to main content

The 26S Proteasomal ATPases: Structure, Function, Regulation, and Potential for Cancer Therapies

  • Chapter
  • First Online:
Resistance to Proteasome Inhibitors in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT))

  • 896 Accesses

Abstract

The 26S proteasome is the only protein degradation machine in the cell that selectively degrades proteins, and as such it regulates the vast majority of cellular processes (e.g., cell proliferation, differentiation, transcription, and signal transduction), and it is essential for cell survival. The multistep process of protein degradation by the 26S proteasome begins with the recognition of substrates by the 19S regulatory particle and ends with their degradation inside the 20S core particle. Inhibitors of the 20S proteolytic sites (e.g., by bortezomib and carfilzomib) have proven useful for the treatment of hematological cancers, especially multiple myeloma, where bortezomib is used as a first-line treatment. However, relapse typically occurs in these patients and drug resistance is observed. Alternative therapeutic targets within the 26S proteasome—especially in 19S regulatory complex—are highly attractive due to the proven requirement for ubiquitin-dependent protein degradation in multiple myeloma. Because the 19S regulatory particle must catalyze a complex multiple step processes to stimulate the degradation of proteins, there are many attractive sites that could be targeted for new cancer therapies. We summarize recent developments in our understanding of the structure, function, and regulation of the 19S ATPases complex and the potential for pharmacological manipulation of the 19S and its ATPases to develop new classes of compounds that inhibit proteasomal regulation rather than global protein degradation, which we expect will have therapeutic advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAA + ATPases:

ATPases associated with diverse cellular activities

CaMKII:

Ca2+/calmodulin-dependent kinase II

CC:

Coiled coil

CP:

Core particle

DUB:

Deubiquitinating enzyme

EM:

Electron microscopy

HbYX:

Hydrophobic (Hb), tyrosine (Y), and any residue (X)

OB:

Oligonucleotide/oligosaccharide binding

OGT:

O-GlcNAc transferase

PA28:

Proteasome activator 28 kDa

PAN:

Proteasome-activating nucleotidase

PI31:

Proteasome inhibitor 31 kDa

PKA:

Protein kinase A

PTMs:

Posttranslational modifications

RP:

Regulatory particle

RPN:

Regulatory particle non-ATPase

RPT:

Regulatory particle ATPase

UBA-UBL domain:

Ubiquitin-associated-ubiquitin-like domain

References

  1. Tomko RJ Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445

    Article  PubMed  CAS  Google Scholar 

  2. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bar-Nun S, Glickman MH (2012) Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta 1823:67–82

    Article  PubMed  CAS  Google Scholar 

  4. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109:1380–1387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Forster F (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109:14870–14875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46:54–66

    Article  PubMed  Google Scholar 

  8. Bohn S, Beck F, Sakata E, Walzthoeni T, Beck M, Aebersold R, Forster F, Baumeister W, Nickell S (2010) Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci U S A 107:20992–20997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Sakata E, Bohn S, Mihalache O, Kiss P, Beck F, Nagy I, Nickell S, Tanaka K, Saeki Y, Forster F, Baumeister W (2012) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci U S A 109:1479–1484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Forster F, Baumeister W (2013) Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci U S A 110:7264–7269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20:781–788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20:687–698

    Article  PubMed  CAS  Google Scholar 

  13. Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey PD, Shi Y (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:473–484

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:485–496

    Article  PubMed  CAS  Google Scholar 

  15. Djuranovic S, Hartmann MD, Habeck M, Ursinus A, Zwickl P, Martin J, Lupas AN, Zeth K (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol Cell 34:580–590

    Article  PubMed  CAS  Google Scholar 

  16. Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    Article  PubMed  CAS  Google Scholar 

  17. Benaroudj N, Goldberg AL (2000) PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2:833–839

    Article  PubMed  CAS  Google Scholar 

  18. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  PubMed  CAS  Google Scholar 

  19. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  PubMed  CAS  Google Scholar 

  20. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27:731–744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30:360–368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–120

    Article  PubMed  CAS  Google Scholar 

  23. Forster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18:589–599

    Article  PubMed  Google Scholar 

  24. Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102

    Article  PubMed  CAS  Google Scholar 

  25. Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (2008) Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem 283:31813–31822

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Kim YC, Demartino GN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 286:26652–26666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497:512–516

    Article  PubMed  CAS  Google Scholar 

  28. Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24:39–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kim YC, Li X, Thompson D, DeMartino GN (2013) ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome. J Biol Chem 288:3334–3345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Sauer RT, Baker TA (2011) AAA + proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    Article  PubMed  CAS  Google Scholar 

  31. Hanson PI, Whiteheart SW (2005) AAA + proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529

    Article  PubMed  CAS  Google Scholar 

  32. Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA + proteins. Annu Rev Biophys Biomol Struct 35:93–114

    Article  PubMed  CAS  Google Scholar 

  33. Peth A, Uchiki T, Goldberg AL (2010) ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell 40:671–681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL (2011) ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144:526–538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11:69–78

    Article  PubMed  CAS  Google Scholar 

  36. Bech-Otschir D, Helfrich A, Enenkel C, Consiglieri G, Seeger M, Holzhutter HG, Dahlmann B, Kloetzel PM (2009) Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat Struct Mol Biol 16:219–225

    Article  PubMed  CAS  Google Scholar 

  37. Peth A, Besche HC, Goldberg AL (2009) Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol Cell 36:794–804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Li X, Demartino GN (2009) Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem J 421:397–404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Peth A, Kukushkin N, Bosse M, Goldberg AL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J Biol Chem 288:7781–7790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Henderson A, Erales J, Hoyt MA, Coffino P (2011) Dependence of proteasome processing rate on substrate unfolding. J Biol Chem 286:17495–17502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Peth A, Nathan JA, Goldberg AL (2013) The ATP costs and time required to degrade ubiquitinated proteins by the 26S proteasome. J Biol Chem 288(40):29215–29222

    Article  PubMed  CAS  Google Scholar 

  42. Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A (2001) ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 7:627–637

    Article  PubMed  CAS  Google Scholar 

  43. Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009) Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137:914–925

    Article  PubMed  CAS  Google Scholar 

  44. Lassot I, Latreille D, Rousset E, Sourisseau M, Linares LK, Chable-Bessia C, Coux O, Benkirane M, Kiernan RE (2007) The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol Cell 25:369–383

    Article  PubMed  CAS  Google Scholar 

  45. Park Y, Hwang YP, Lee JS, Seo SH, Yoon SK, Yoon JB (2005) Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol Cell Biol 25:3842–3853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Shim SM, Lee WJ, Kim Y, Chang JW, Song S, Jung YK (2012) Role of S5b/PSMD5 in proteasome inhibition caused by TNF-alpha/NFkappaB in higher eukaryotes. Cell Rep 2:603–615

    Article  PubMed  CAS  Google Scholar 

  47. McCutchen-Maloney SL, Matsuda K, Shimbara N, Binns DD, Tanaka K, Slaughter CA, DeMartino GN (2000) cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 275:18557–18565

    Article  PubMed  CAS  Google Scholar 

  48. Zaiss DM, Standera S, Holzhutter H, Kloetzel P, Sijts AJ (1999) The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457:333–338

    Article  PubMed  CAS  Google Scholar 

  49. Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL, Steller H (2011) A conserved f box regulatory complex controls proteasome activity in Drosophila. Cell 145:371–382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Cho-Park P, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153:614–627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  PubMed  CAS  Google Scholar 

  52. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407

    Article  PubMed  CAS  Google Scholar 

  53. Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10(5):R110.003871

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111

    Article  PubMed  CAS  Google Scholar 

  55. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179–184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Jung H, Kim BG, Han W, Lee J, Cho JY, Park W, Maurice M, Han JK, Lee M, Finley D, Jho EH (2013) Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2:e64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385:737–740

    Article  PubMed  CAS  Google Scholar 

  58. Koulich E, Li X, DeMartino GN (2008) Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell 19:1072–1082

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Aiken CT, Kaake RM, Wang X, Huang L (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 10:R110.006924

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schmidt M, Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843(1):13–25

    Article  PubMed  CAS  Google Scholar 

  61. Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE (2007) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282:22460–22471

    Article  PubMed  CAS  Google Scholar 

  62. Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284:26655–26665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Um JW, Im E, Park J, Oh Y, Min B, Lee HJ, Yoon JB, Chung KC (2010) ASK1 negatively regulates the 26 S proteasome. J Biol Chem 285:36434–36446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:715–725

    Article  PubMed  CAS  Google Scholar 

  65. D’Arcy P, Brnjic S, Olofsson MH, Fryknas M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson R, Linder S (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17(12):1636–1640

    Article  PubMed  Google Scholar 

  66. Lim HS, Archer CT, Kodadek T (2007) Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J Am Chem Soc 129:7750–7751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Lim HS, Cai D, Archer CT, Kodadek T (2007) Periodate-triggered cross-linking reveals Sug2/Rpt4 as the molecular target of a peptoid inhibitor of the 19S proteasome regulatory particle. J Am Chem Soc 129:12936–12937

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, YC., Smith, D.M. (2014). The 26S Proteasomal ATPases: Structure, Function, Regulation, and Potential for Cancer Therapies. In: Dou, Q. (eds) Resistance to Proteasome Inhibitors in Cancer. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-06752-0_14

Download citation

Publish with us

Policies and ethics