Skip to main content

Novel Ubiquitin E3 Ligases as Targets for Cancer Therapy: Focus on Breast Cancer-Associated Gene 2 (BCA2)

  • Chapter
  • First Online:
Resistance to Proteasome Inhibitors in Cancer

Abstract

The struggle to find new cancer targets continues unabated. With this in mind, E3 ligases (also called E3 ubiquitin ligases) constitute a large and diverse family of genes that play a role in the ubiquitination of proteins as well as in a myriad of other important activities in cells including, but not limited to, DNA repair and proliferation. Breast cancer-associated protein 2 (BCA2) is an E3 ligase that is expressed in a large number of invasive breast cancers and is involved in several important cellular functions. In this chapter we describe the mechanisms that control the expression and half-life of BCA2 and the association between high expression of BCA2 and breast cancer tumor grade. Furthermore, we explore the role that this E3 ligase may play in cancer progression. Finally, we examine the potential effects of E3 ligases, including BCA2, a novel class of wide-ranging therapeutic cancer targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH:

Aldehyde dehydrogenase

APC:

Anaphase-promoting complex

BARD1:

BRCA1-associated RING domain 1

BCA2:

Breast cancer-associated gene 2

BER:

Base excision repair

BZF:

BCA2 zinc-finger

C-CBL:

Casitas B-lineage lymphoma

Cdc4:

Cell division cycle 4

CDK:

Cyclin-dependent kinase

CGH:

Comparative genomic hybridization

CHX:

Cycloheximide

DUBs:

Deubiquitinating enzymes

E1:

Ubiquitin-activating enzyme

E2s:

Ubiquitin-conjugating enzymes

E3s:

Ubiquitin ligases

E6-AP:

E6-associated protein

EFP:

Estrogen-responsive finger protein

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

FBW7:

F-box and WD repeat domain-containing 7

FR:

Folate receptor

HER2:

Epidermal growth factor receptor 2

hHR23a:

Human homolog of Rad23 variant A

HOS:

Homolog of Slimb

HPV:

Human papillomavirus

HSV-1:

Herpes simplex virus-1

K:

Lysine

LMP-1:

Latent membrane protein 1

MetAP-2:

Methionine aminopeptidase-2

NER:

Nucleotide excision repair

PDGFRα:

Platelet-derived growth factor receptor alpha

PR:

Progesterone receptor

Protac:

Proteolysis targeting chimeric molecule

RNAi:

RNA interference

RTK:

Receptor tyrosine kinases

SCF:

Skp-Cullin-F-box

TOR:

Target of rapamycin

UBL:

Ubiquitin-like

UPS:

Ubiquitin-proteasome system

VHL:

von Hippel-Lindau

XP:

Xeroderma pigmentosum

XPC:

XP group C protein

References

  1. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102. doi:10.1093/emboj/19.1.94

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145. doi:10.1016/j.cell.2009.01.041

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Duncan LM, Piper S, Dodd RB, Saville MK, Sanderson CM, Luzio JP, Lehner PJ (2006) Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J 25(8):1635–1645. doi:10.1038/sj.emboj.7601056

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Iwai K, Tokunaga F (2009) Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep 10(7):706–713. doi:10.1038/embor.2009.144

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Tokunaga F (2013) Linear ubiquitination-mediated NF-kappaB regulation and its related disorders. J Biochem 154(4):313–323. doi:10.1093/jb/mvt079

    PubMed  CAS  Google Scholar 

  6. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37(Pt 5):937–953. doi:10.1042/BST0370937

    PubMed  CAS  Google Scholar 

  7. Alpi AF, Pace PE, Babu MM, Patel KJ (2008) Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol Cell 32(6):767–777. doi:10.1016/j.molcel.2008.12.003

    PubMed  CAS  Google Scholar 

  8. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5(5):461–466. doi:10.1038/ncb983

    PubMed  CAS  Google Scholar 

  9. Sigismund S, Polo S, Di Fiore PP (2004) Signaling through monoubiquitination. Curr Top Microbiol Immunol 286:149–185

    PubMed  CAS  Google Scholar 

  10. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. doi:10.1038/nrm2731

    PubMed  CAS  Google Scholar 

  11. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397. doi:10.1146/annurev.biochem.78.082307.091526

    PubMed  CAS  Google Scholar 

  12. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1–3):55–72. doi:10.1016/j.bbamcr.2004.09.019

    PubMed  CAS  Google Scholar 

  13. Chen Z, Pickart CM (1990) A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J Biol Chem 265(35): 21835–21842

    PubMed  CAS  Google Scholar 

  14. Haas AL, Reback PB, Chau V (1991) Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E2(20K) AND E2(32K). J Biol Chem 266(8):5104–5112

    PubMed  CAS  Google Scholar 

  15. Hofmann RM, Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96(5):645–653

    PubMed  CAS  Google Scholar 

  16. Van Nocker S, Vierstra RD (1991) Cloning and characterization of a 20-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. Proc Natl Acad Sci U S A 88(22):10297–10301

    PubMed  PubMed Central  Google Scholar 

  17. Wang M, Cheng D, Peng J, Pickart CM (2006) Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J 25(8):1710–1719. doi:10.1038/sj.emboj.7601061

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Burger AM, Seth AK (2004) The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 40(15):2217–2229. doi:10.1016/j.ejca.2004.07.006

    PubMed  CAS  Google Scholar 

  19. Metzger MB, Weissman AM (2010) Working on a chain: E3s ganging up for ubiquitylation. Nat Cell Biol 12(12):1124–1126. doi:10.1038/ncb1210-1124

    PubMed  CAS  Google Scholar 

  20. de Bie P, Ciechanover A (2011) Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 18(9):1393–1402. doi:10.1038/cdd.2011.16

    PubMed  PubMed Central  Google Scholar 

  21. Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A (2006) The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell 24(5):701–711. doi:10.1016/j.molcel.2006.10.022

    PubMed  CAS  Google Scholar 

  22. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845–854. doi:10.1016/j.molcel.2005.12.002

    PubMed  CAS  Google Scholar 

  23. Canning M, Boutell C, Parkinson J, Everett RD (2004) A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 279(37):38160–38168. doi:10.1074/jbc.M402885200

    PubMed  CAS  Google Scholar 

  24. Li Y, Gazdoiu S, Pan ZQ, Fuchs SY (2004) Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J Biol Chem 279(12):11074–11080. doi:10.1074/jbc.M312301200

    PubMed  CAS  Google Scholar 

  25. Pashkova N, Gakhar L, Winistorfer SC, Yu L, Ramaswamy S, Piper RC (2010) WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell 40(3):433–443. doi:10.1016/j.molcel.2010.10.018

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Rothenberger S, Burns K, Rousseaux M, Tschopp J, Bron C (2003) Ubiquitination of the Epstein-Barr virus-encoded latent membrane protein 1 depends on the integrity of the TRAF binding site. Oncogene 22(36):5614–5618. doi:10.1038/sj.onc.1206497

    PubMed  CAS  Google Scholar 

  27. Wu M, Tu T, Huang Y, Cao Y (2013) Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene. BMC Cancer 13:44. doi:10.1186/1471-2407-13-44

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Burger AM, Zhang X, Li H, Ostrowski JL, Beatty B, Venanzoni M, Papas T, Seth A (1998) Down-regulation of T1A12/mac25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene 16(19):2459–2467. doi:10.1038/sj.onc.1201772

    PubMed  CAS  Google Scholar 

  29. Burger AM, Gao Y, Amemiya Y, Kahn HJ, Kitching R, Yang Y, Sun P, Narod SA, Hanna WM, Seth AK (2005) A novel RING-type ubiquitin ligase breast cancer-associated gene 2 correlates with outcome in invasive breast cancer. Cancer Res 65(22):10401–10412. doi:10.1158/0008-5472.CAN-05-2103

    PubMed  CAS  Google Scholar 

  30. Toujani S, Dessen P, Ithzar N, Danglot G, Richon C, Vassetzky Y, Robert T, Lazar V, Bosq J, Da Costa L, Perot C, Ribrag V, Patte C, Wiels J, Bernheim A (2009) High resolution genome-wide analysis of chromosomal alterations in Burkitt’s lymphoma. PLoS One 4(9):e7089. doi:10.1371/journal.pone.0007089

    PubMed  PubMed Central  Google Scholar 

  31. Amemiya Y, Azmi P, Seth A (2008) Autoubiquitination of BCA2 RING E3 ligase regulates its own stability and affects cell migration. Mol Cancer Res 6(9):1385–1396. doi:10.1158/1541-7786.MCR-08-0094

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Connor MK, Azmi PB, Subramaniam V, Li H, Seth A (2005) Molecular characterization of ring finger protein 11. Mol Cancer Res 3(8):453–461. doi:10.1158/1541-7786.MCR-04-0166

    PubMed  CAS  Google Scholar 

  33. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275(12):8945–8951

    PubMed  CAS  Google Scholar 

  34. Hu G, Fearon ER (1999) Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol Cell Biol 19(1):724–732

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Zhi X, Zhao D, Wang Z, Zhou Z, Wang C, Chen W, Liu R, Chen C (2013) E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer Res 73(1):385–394. doi:10.1158/0008-5472.CAN-12-0562

    PubMed  CAS  Google Scholar 

  36. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434. doi:10.1146/annurev.biochem.78.101807.093809

    PubMed  CAS  Google Scholar 

  37. Miyakawa K, Ryo A, Murakami T, Ohba K, Yamaoka S, Fukuda M, Guatelli J, Yamamoto N (2009) BCA2/Rabring7 promotes tetherin-dependent HIV-1 restriction. PLoS Pathog 5(12):e1000700. doi:10.1371/journal.ppat.1000700

    PubMed  PubMed Central  Google Scholar 

  38. Mizuno K, Kitamura A, Sasaki T (2003) Rabring7, a novel Rab7 target protein with a RING finger motif. Mol Biol Cell 14(9):3741–3752. doi:10.1091/mbc.E02-08-0495

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Sakane A, Hatakeyama S, Sasaki T (2007) Involvement of Rabring7 in EGF receptor degradation as an E3 ligase. Biochem Biophys Res Commun 357(4):1058–1064. doi:10.1016/j.bbrc.2007.04.052

    PubMed  CAS  Google Scholar 

  40. Wang Z, Nie Z, Chen W, Zhou Z, Kong Q, Seth AK, Liu R, Chen C (2013) RNF115/BCA2 E3 ubiquitin ligase promotes breast cancer cell proliferation through targeting p21Waf1/Cip1 for ubiquitin-mediated degradation. Neoplasia 15(9):1028–1035

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Burger A, Amemiya Y, Kitching R, Seth AK (2006) Novel RING E3 ubiquitin ligases in breast cancer. Neoplasia 8(8):689–695. doi:10.1593/neo.06469

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Dantuma NP, Heinen C, Hoogstraten D (2009) The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair 8(4):449–460. doi:10.1016/j.dnarep.2009.01.005

    PubMed  CAS  Google Scholar 

  43. Benzinger A, Muster N, Koch HB, Yates JR III, Hermeking H (2005) Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 4(6):785–795. doi:10.1074/mcp.M500021-MCP200

    PubMed  CAS  Google Scholar 

  44. Hsieh HC, Hsieh YH, Huang YH, Shen FC, Tsai HN, Tsai JH, Lai YT, Wang YT, Chuang WJ, Huang W (2005) HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair. Biochem Biophys Res Commun 335(1):181–187. doi:10.1016/j.bbrc.2005.07.067

    PubMed  CAS  Google Scholar 

  45. Li L, Lu X, Peterson C, Legerski R (1997) XPC interacts with both HHR23B and HHR23A in vivo. Mutat Res 383(3):197–203

    PubMed  CAS  Google Scholar 

  46. Kang Y, Chen X, Lary JW, Cole JL, Walters KJ (2007) Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J Mol Biol 369(1):168–176. doi:10.1016/j.jmb.2007.03.008

    PubMed  CAS  Google Scholar 

  47. Kang Y, Vossler RA, Diaz-Martinez LA, Winter NS, Clarke DJ, Walters KJ (2006) UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J Mol Biol 356(4):1027–1035. doi:10.1016/j.jmb.2005.12.001

    PubMed  CAS  Google Scholar 

  48. Watkins JF, Sung P, Prakash L, Prakash S (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13(12):7757–7765

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Fishbain S, Prakash S, Herrig A, Elsasser S, Matouschek A (2011) Rad23 escapes degradation because it lacks a proteasome initiation region. Nat Commun 2:192. doi:10.1038/ncomms1194

    PubMed  PubMed Central  Google Scholar 

  50. Bacopulos S, Amemiya Y, Yang W, Zubovits J, Burger A, Yaffe M, Seth AK (2012) Effects of partner proteins on BCA2 RING ligase activity. BMC Cancer 12:63. doi:10.1186/1471-2407-12-63

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Raasi S, Orlov I, Fleming KG, Pickart CM (2004) Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J Mol Biol 341(5):1367–1379. doi:10.1016/j.jmb.2004.06.057

    PubMed  CAS  Google Scholar 

  52. Lodygin D, Hermeking H (2005) The role of epigenetic inactivation of 14-3-3sigma in human cancer. Cell Res 15(4):237–246. doi:10.1038/sj.cr.7290292

    PubMed  CAS  Google Scholar 

  53. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1(1):3–11

    PubMed  CAS  Google Scholar 

  54. Laronga C, Yang HY, Neal C, Lee MH (2000) Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275(30):23106–23112. doi:10.1074/jbc.M905616199

    PubMed  CAS  Google Scholar 

  55. Wilker EW, Grant RA, Artim SC, Yaffe MB (2005) A structural basis for 14-3-3sigma functional specificity. J Biol Chem 280(19):18891–18898. doi:10.1074/jbc.M500982200

    PubMed  CAS  Google Scholar 

  56. Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S (1999) Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 59(21):5464–5470

    PubMed  CAS  Google Scholar 

  57. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, Marks JR, Lambers AR, Futreal PA, Stampfer MR, Sukumar S (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A 97(11):6049–6054. doi:10.1073/pnas.100566997

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91(7):961–971

    PubMed  CAS  Google Scholar 

  60. Vanlandingham PA, Ceresa BP (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 284(18):12110–12124. doi:10.1074/jbc.M809277200

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Alwan HA, van Zoelen EJ, van Leeuwen JE (2003) Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem 278(37):35781–35790. doi:10.1074/jbc.M301326200

    PubMed  CAS  Google Scholar 

  62. Ettenberg SA, Magnifico A, Cuello M, Nau MM, Rubinstein YR, Yarden Y, Weissman AM, Lipkowitz S (2001) Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex. J Biol Chem 276(29):27677–27684. doi:10.1074/jbc.M102641200

    PubMed  CAS  Google Scholar 

  63. Cheng PL, Lu H, Shelly M, Gao H, Poo MM (2011) Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 69(2):231–243. doi:10.1016/j.neuron.2010.12.021

    PubMed  CAS  Google Scholar 

  64. Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattiroli F, Song JY, van der Poel H, Ponz OB, Pritchard C, Cornelissen-Steijger P, Zevenhoven J, Tanger E, Sixma TK, Ganesan S, van Lohuizen M (2012) Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J Clin Invest 122(5):1920–1932. doi:10.1172/JCI57477

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4(6):1029–1040

    PubMed  CAS  Google Scholar 

  66. Gruber T, Hermann-Kleiter N, Hinterleitner R, Fresser F, Schneider R, Gastl G, Penninger JM, Baier G (2009) PKC-theta modulates the strength of T cell responses by targeting Cbl-b for ubiquitination and degradation. Sci Signal 2(76):ra30. doi:10.1126/scisignal.2000046

    PubMed  Google Scholar 

  67. Umebayashi K, Stenmark H, Yoshimori T (2008) Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol Biol Cell 19(8):3454–3462. doi:10.1091/mbc.E07-10-0988

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Smith CJ, Berry DM, McGlade CJ (2013) The E3 ubiquitin ligases RNF126 and Rabring7 regulate endosomal sorting of the epidermal growth factor receptor. J Cell Sci 126(Pt 6):1366–1380. doi:10.1242/jcs.116129

    PubMed  CAS  Google Scholar 

  69. Burger AM, Kona F, Amemiya Y, Gao Y, Bacopulos S, Seth AK (2010) Role of the BCA2 ubiquitin E3 ligase in hormone responsive breast cancer. Open Cancer J 3(1):116–123

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Higashiyama M, Doi O, Kodama K, Yokouchi H, Kasugai T, Ishiguro S, Takami K, Nakayama T, Nishisho I (1997) MDM2 gene amplification and expression in non-small-cell lung cancer: immunohistochemical expression of its protein is a favourable prognostic marker in patients without p53 protein accumulation. Br J Cancer 75(9):1302–1308

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Horie K, Urano T, Ikeda K, Inoue S (2003) Estrogen-responsive RING finger protein controls breast cancer growth. J Steroid Biochem Mol Biol 85(2–5):101–104

    PubMed  CAS  Google Scholar 

  72. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2(1):1–8

    PubMed  CAS  Google Scholar 

  73. Polsky D, Melzer K, Hazan C, Panageas KS, Busam K, Drobnjak M, Kamino H, Spira JG, Kopf AW, Houghton A, Cordon-Cardo C, Osman I (2002) HDM2 protein overexpression and prognosis in primary malignant melanoma. J Natl Cancer Inst 94(23):1803–1806

    PubMed  CAS  Google Scholar 

  74. Bieche I, Champeme MH, Lidereau R (1995) Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin Cancer Res 1(1):123–127

    PubMed  CAS  Google Scholar 

  75. Rennstam K, Ahlstedt-Soini M, Baldetorp B, Bendahl PO, Borg A, Karhu R, Tanner M, Tirkkonen M, Isola J (2003) Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63(24):8861–8868

    PubMed  CAS  Google Scholar 

  76. Ehsani L, Seth R, Bacopulos S, Seth A, Osunkoya AO (2013) BCA2 is differentially expressed in renal oncocytoma: an analysis of 158 renal neoplasms. Tumour Biol 34(2):787–791. doi:10.1007/s13277-012-0608-8

    PubMed  CAS  Google Scholar 

  77. Bortezomib (Velcade) for Multiple Myeloma (2003) The Medical Letter on Drugs and Therapeutics 45(1161):57–58

    Google Scholar 

  78. Mitchell BS (2003) The proteasome—an emerging therapeutic target in cancer. N Engl J Med 348(26):2597–2598. doi:10.1056/NEJMp030092

    PubMed  Google Scholar 

  79. Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143(5):686–693. doi:10.1016/j.cell.2010.11.016

    PubMed  CAS  Google Scholar 

  80. Beerheide W, Bernard HU, Tan YJ, Ganesan A, Rice WG, Ting AE (1999) Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J Natl Cancer Inst 91(14):1211–1220

    PubMed  CAS  Google Scholar 

  81. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848. doi:10.1126/science.1092472

    PubMed  CAS  Google Scholar 

  82. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241. doi:10.1146/annurev.pharmtox.48.113006.094723

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Lai Z, Yang T, Kim YB, Sielecki TM, Diamond MA, Strack P, Rolfe M, Caligiuri M, Benfield PA, Auger KR, Copeland RA (2002) Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc Natl Acad Sci U S A 99(23):14734–14739. doi:10.1073/pnas.212428599

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Wang H, Zeng X, Oliver P, Le LP, Chen J, Chen L, Zhou W, Agrawal S, Zhang R (1999) MDM2 oncogene as a target for cancer therapy: an antisense approach. Int J Oncol 15(4):653–660

    PubMed  CAS  Google Scholar 

  85. Severe N, Dieudonne FX, Marty C, Modrowski D, Patino-Garcia A, Lecanda F, Fromigue O, Marie PJ (2012) Targeting the E3 ubiquitin casitas B-lineage lymphoma decreases osteosarcoma cell growth and survival and reduces tumorigenesis. J Bone Miner Res 27(10):2108–2117. doi:10.1002/jbmr.1667

    PubMed  CAS  Google Scholar 

  86. Brahemi G, Kona FR, Fiasella A, Buac D, Soukupova J, Brancale A, Burger AM, Westwell AD (2010) Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer. J Med Chem 53(7):2757–2765. doi:10.1021/jm901757t

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Ande SR, Chen J, Maddika S (2009) The ubiquitin pathway: an emerging drug target in cancer therapy. Eur J Pharmacol 625(1–3):199–205. doi:10.1016/j.ejphar.2009.08.042

    PubMed  CAS  Google Scholar 

  88. Starczynowski DT, Lockwood WW, Delehouzee S, Chari R, Wegrzyn J, Fuller M, Tsao MS, Lam S, Gazdar AF, Lam WL, Karsan A (2011) TRAF6 is an amplified oncogene bridging the RAS and NF-kappaB pathways in human lung cancer. J Clin Invest 121(10):4095–4105. doi:10.1172/JCI58818

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R (2003) Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12(5):1087–1099

    PubMed  CAS  Google Scholar 

  90. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458(7237):438–444. doi:10.1038/nature07960

    PubMed  CAS  Google Scholar 

  91. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134(10):4465–4468. doi:10.1021/ja209924v

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111(9):4690–4699. doi:10.1182/blood-2007-09-112904

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Nakajima H, Fujiwara H, Furuichi Y, Tanaka K, Shimbara N (2008) A novel small-molecule inhibitor of NF-kappaB signaling. Biochem Biophys Res Commun 368(4):1007–1013. doi:10.1016/j.bbrc.2008.01.166

    PubMed  CAS  Google Scholar 

  94. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98(15):8554–8559. doi:10.1073/pnas.141230798

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, Deshaies RJ (2003) Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics 2(12):1350–1358. doi:10.1074/mcp.T300009-MCP200

    PubMed  CAS  Google Scholar 

  96. Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, Sicheri F, Tyers M (2010) An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol 28(7):733–737. doi:10.1038/nbt.1646

    PubMed  CAS  Google Scholar 

  97. Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, Damoiseaux R, Hao R, Del Moral PM, Verma R, Li Y, Li C, Houk KN, Jung ME, Zheng N, Huang L, Deshaies RJ, Kaiser P, Huang J (2010) Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol 28(7):738–742. doi:10.1038/nbt.1645

    PubMed  CAS  Google Scholar 

  98. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    PubMed  CAS  Google Scholar 

  99. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A 99(20):12847–12852. doi:10.1073/pnas.202365899

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H, DiPetrillo TA, Wazer DE, Band V, Band H (2003) ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem 278(16):13829–13837. doi:10.1074/jbc.M209640200

    PubMed  CAS  Google Scholar 

  101. Hartmann LC, Keeney GL, Lingle WL, Christianson TJ, Varghese B, Hillman D, Oberg AL, Low PS (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121(5):938–942. doi:10.1002/ijc.22811

    PubMed  CAS  Google Scholar 

  102. Yuan Y, Nymoen DA, Dong HP, Bjorang O, Shih Ie M, Low PS, Trope CG, Davidson B (2009) Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol 40(10):1453–1460. doi:10.1016/j.humpath.2009.02.013

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Seth Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amemiya, Y., Bacopulos, S., Seth, A. (2014). Novel Ubiquitin E3 Ligases as Targets for Cancer Therapy: Focus on Breast Cancer-Associated Gene 2 (BCA2). In: Dou, Q. (eds) Resistance to Proteasome Inhibitors in Cancer. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-06752-0_13

Download citation

Publish with us

Policies and ethics