Skip to main content

Proteasome Inhibitors Versus E3 Ligase Inhibitors for Cancer Therapy

  • Chapter
  • First Online:
Resistance to Proteasome Inhibitors in Cancer

Abstract

Molecular oncology has the potential to revolutionize cancer treatment owing to its focus on discrete, cancer-selective targets, as evident in the recent success of kinase inhibitors and antibody-based therapies. Because of the heterogeneous nature of cancer, however, not every tumor type can be addressed with an appropriately selective therapy and some respond best to drug combinations that include classical “toxic” agents. The ubiquitin-proteasome pathway, recently harnessed for cancer treatment with the clinical use of “toxic” proteasome inhibitors bortezomib and carfilzomib, affords targets that intuitively are highly selective, exemplified by inhibitors of E3 ligases, the ubiquitin-conjugating enzymes, as well as those that are intuitively nonselective, exemplified by the proteasomal proteases. In the last two decades, anticancer drug development based on these two target classes has proceeded in parallel, with the early results suggesting that the nonselective proteasome is the better target. Lately, however, it has become clear that (1) the “nonselective” proteasome target may be addressed in selective ways and (2) a clearer understanding of the E3 ligase reaction can lead to the design or discovery of efficacious inhibitors. Evidence supporting these notions and implications for cancer treatment going forward will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADME:

Absorption distribution, metabolism, excretion

DUB:

Deubiquitylating enzyme

ERAD:

Endoplasmic reticulum-associated degradation

HDM2:

Human variant of MDM2 = murine double minute 2 homologue (an E3 ligase)

IAP:

Inhibitor of apoptosis

RING:

Really interesting new gene

USP:

Ubiquitin-specific protease

References

  1. Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7(1):9–16

    PubMed  CAS  Google Scholar 

  2. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11(4–5):164–179

    PubMed  CAS  Google Scholar 

  3. Anderson KC (2013) Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Canc Netw 11(5 suppl):676–679

    PubMed  CAS  Google Scholar 

  4. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421

    PubMed  CAS  Google Scholar 

  5. Lopez-Girona A et al (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26(11):2326–2335

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Pellom ST Jr, Shanker A (2012) Development of proteasome inhibitors as therapeutic drugs. J Clin Cell Immunol S5:5

    PubMed  Google Scholar 

  7. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    PubMed  CAS  Google Scholar 

  8. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79–87

    PubMed  CAS  Google Scholar 

  9. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115

    PubMed  CAS  Google Scholar 

  10. Miller Z et al (2013) Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 19(22):4140–4151

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Wehenkel M et al (2012) A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. Br J Cancer 107(1):53–62

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2(3):179–187

    PubMed  CAS  Google Scholar 

  13. Suzuki E et al (2011) Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One 6(12):e27996

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 10(1):73–78

    PubMed  CAS  Google Scholar 

  15. Teicher BA et al (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5(9):2638–2645

    PubMed  CAS  Google Scholar 

  16. Orlowski RZ et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20(22):4420–4427

    PubMed  CAS  Google Scholar 

  17. Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14(6):1649–1657

    PubMed  CAS  Google Scholar 

  18. Molineaux SM (2012) Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res 18(1):15–20

    PubMed  CAS  Google Scholar 

  19. Ruschak AM et al (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017

    PubMed  CAS  Google Scholar 

  20. Frezza M, Schmitt S, Dou QP (2011) Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem 11(23):2888–2905

    PubMed  CAS  Google Scholar 

  21. Palombella VJ et al (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

    PubMed  CAS  Google Scholar 

  22. Hideshima T et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076

    PubMed  CAS  Google Scholar 

  23. Shanker A et al (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100(9):649–662

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Lesinski GB et al (2008) IFN-alpha and bortezomib overcome Bcl-2 and Mcl-1 overexpression in melanoma cells by stimulating the extrinsic pathway of apoptosis. Cancer Res 68(20):8351–8360

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Ling YH et al (2002) PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 1(10):841–849

    PubMed  CAS  Google Scholar 

  26. Landowski TH et al (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65(9):3828–3836

    PubMed  CAS  Google Scholar 

  27. Wang F et al (2011) A novel dithiocarbamate analogue with potentially decreased ALDH inhibition has copper-dependent proteasome-inhibitory and apoptosis-inducing activity in human breast cancer cells. Cancer Lett 300(1):87–95

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Ding WX et al (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Chastagner P, Israel A, Brou C (2008) AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3(7):e2735

    PubMed  PubMed Central  Google Scholar 

  30. Tan JM et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17(3):431–439

    PubMed  CAS  Google Scholar 

  31. Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2(12):a006734

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29(3):451–462

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110(10):1389–1398

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Travers KJ et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258

    PubMed  CAS  Google Scholar 

  35. Lu S, Wang J (2013) The resistance mechanisms of proteasome inhibitor bortezomib. Biomark Res 1(13):1–9

    Google Scholar 

  36. Lu S et al (2008) Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther 326(2):423–431

    PubMed  CAS  Google Scholar 

  37. Oerlemans R et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499

    PubMed  CAS  Google Scholar 

  38. Letai A et al (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192

    PubMed  CAS  Google Scholar 

  39. Xiao C et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Chauhan D et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419

    PubMed  CAS  Google Scholar 

  41. Wang HH et al (2011) Reversion of multidrug-resistance by proteasome inhibitor bortezomib in K562/DNR cell line. Chin J Cancer Res 23(1):69–73

    PubMed  CAS  PubMed Central  Google Scholar 

  42. O’Connor R et al (2013) The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol 71(5):1357–1368

    PubMed  Google Scholar 

  43. de Wilt LH et al (2012) Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol 83(2):207–217

    PubMed  Google Scholar 

  44. Shringarpure R et al (2006) Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol 134(2):145–156

    PubMed  CAS  Google Scholar 

  45. Lu S et al (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36(10):1278–1284

    PubMed  CAS  Google Scholar 

  46. Buda G et al (2010) Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 89(11):1133–1140

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Kuhn DJ et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110(9):3281–3290

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Kupperman E et al (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70(5):1970–1980

    PubMed  CAS  Google Scholar 

  49. Piva R et al (2008) CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 111(5):2765–2775

    PubMed  CAS  Google Scholar 

  50. Demo SD et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67(13):6383–6391

    PubMed  CAS  Google Scholar 

  51. Chauhan D et al (2010) A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116(23):4906–4915

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Daniel KG et al (2005) Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 7(6):R897–R908

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Schimmer AD et al (2012) A phase I study of the metal ionophore clioquinol in patients with advanced hematologic malignancies. Clin Lymphoma Myeloma Leuk 12(5):330–336

    PubMed  CAS  Google Scholar 

  54. Voorhees PM, Orlowski RZ (2006) The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46:189–213

    PubMed  CAS  Google Scholar 

  55. Kuhn DJ et al (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Kisselev AF et al (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278(38):35869–35877

    PubMed  CAS  Google Scholar 

  57. van Swieten PF et al (2007) A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg Med Chem Lett 17(12):3402–3405

    PubMed  Google Scholar 

  58. Mirabella AC, Pletnev AA, Downey SL, Florea BI, Shabaneh TB, Britton M, Verdoes M, Filippov DV, Overkleeft HS, Kisselev AF (2011) Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem Biol 18(5):608–618

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Sprangers R et al (2008) TROSY-based NMR evidence for a novel class of 20S proteasome inhibitors. Biochemistry 47(26):6727–6734

    PubMed  CAS  Google Scholar 

  60. D’Arcy P et al (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17(12):1636–1640

    PubMed  Google Scholar 

  61. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2(3):169–178

    PubMed  CAS  Google Scholar 

  62. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    PubMed  CAS  Google Scholar 

  63. Herman-Bachinsky Y et al (2007) Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ 14(4):861–871

    PubMed  CAS  Google Scholar 

  64. Garber K (2005) Missing the target: ubiquitin ligase drugs stall. J Natl Cancer Inst 97(3):166–167

    PubMed  Google Scholar 

  65. Buchwald M et al (2010) Ubiquitin conjugase UBCH8 targets active FMS-like tyrosine kinase 3 for proteasomal degradation. Leukemia 24(8):1412–1421

    PubMed  CAS  Google Scholar 

  66. Rajbhandari P et al (2013) Pin1 modulates ERalpha levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation. Oncogene 33:1438–1447

    PubMed  PubMed Central  Google Scholar 

  67. Regnstrom K et al (2013) Label free fragment screening using surface plasmon resonance as a tool for fragment finding—analyzing parkin, a difficult CNS target. PLoS One 8(7):e66879

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Salemme FR (2004) High-throughput biochemistry heats up. Nat Biotechnol 22(9):1100–1101

    PubMed  CAS  Google Scholar 

  69. Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3(4):419–421

    PubMed  CAS  Google Scholar 

  70. Pantoliano MW et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6(6):429–440

    PubMed  CAS  Google Scholar 

  71. Grasberger BL et al (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48(4):909–912

    PubMed  CAS  Google Scholar 

  72. Zelcer N et al (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325(5936):100–104

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Eddins M (2013) Promising cardiovascular intervention by ubiquitin ligases: LDL-cholesterol regulation by IDOL. In: Ubiquitin drug discovery & diagnostics conference 2013. Conference presentation abstracts, p 29

    Google Scholar 

  74. Razinkov VI, Treuheit MJ, Becker GW (2013) Methods of high throughput biophysical characterization in biopharmaceutical development. Curr Drug Discov Technol 10(1):59–70

    PubMed  CAS  Google Scholar 

  75. Page RC et al (2012) Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates. Biochemistry 51(20):4175–4187

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Katoh S et al (2005) Active site residues and amino acid specificity of the ubiquitin carrier protein-binding RING-H2 finger domain. J Biol Chem 280(49):41015–41024

    PubMed  CAS  Google Scholar 

  77. Zhao Y et al (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135(19):7223–7234

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Buckley DL et al (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134(10):4465–4468

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    PubMed  CAS  Google Scholar 

  80. Ciechanover A, Orian A, Schwartz AL (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem 77(S34):40–51

    Google Scholar 

  81. Chen JJ, Tsu CA, Gavin JA, Milhollen MA, Bruzzese FJ, Mallender WD, Sintchak MD, Bump NJ, Yang X, Ma J, Loke H-K, Xu Q, Li P, Bence NF, Brownell JE, Dick LR (2011) Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. J Biol Chem 286(47):40867–40877

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Chen Q et al (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111(9):4690–4699

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Milhollen MA et al (2012) Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21(3):388–401

    PubMed  CAS  Google Scholar 

  84. Yang Y, Kitagati J, Dai R-M, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li C-CH, Kenten JH, Beutler JA, Vousden KH, Weissman AM (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 67(19):9472–9481

    PubMed  CAS  Google Scholar 

  85. Ceccarelli DF et al (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145(7):1075–1087

    PubMed  CAS  Google Scholar 

  86. Boddy MN, Freemont PS, Borden KL (1994) The p53-associated protein MDM2 contains a newly characterized zinc-binding domain called the RING finger. Trends Biochem Sci 19(5):198–199

    PubMed  CAS  Google Scholar 

  87. Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10(6):1565–1569

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:978312

    PubMed  PubMed Central  Google Scholar 

  89. Yuan Y et al (2011) Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol 4:16

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Issaeva N et al (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10(12):1321–1328

    PubMed  CAS  Google Scholar 

  91. Patel S, Player MR (2008) Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Expert Opin Investig Drugs 17(12):1865–1882

    PubMed  CAS  Google Scholar 

  92. Zhao Y, Bernard D, Wang S (2013) Small molecule inhibitors of MDM2-p53 and MDMX-p53 interactions as new cancer therapeutics. Biodiscovery 8(4):1–15

    Google Scholar 

  93. Secchiero P et al (2011) Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des 17(6):569–577

    PubMed  CAS  Google Scholar 

  94. Wei SJ et al (2013) In vitro selection of mutant HDM2 resistant to Nutlin inhibition. PLoS One 8(4):e62564

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Vatsyayan R et al (2013) Nutlin-3 enhances sorafenib efficacy in renal cell carcinoma. Mol Carcinog 52(1):39–48

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Smith MA et al (2012) Initial testing of JNJ-26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatr Blood Cancer 59(2):329–332

    PubMed  Google Scholar 

  97. Kojima K et al (2010) The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 9(9):2545–2557

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Tabernero J et al (2011) A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res 17(19):6313–6321

    PubMed  CAS  Google Scholar 

  99. Biderman L, Manley JL, Prives C (2012) Mdm2 and MdmX as regulators of gene expression. Genes Cancer 3(3–4):264–273

    PubMed  PubMed Central  Google Scholar 

  100. Zhao Y et al (2013) A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56:5553–5561

    PubMed  CAS  Google Scholar 

  101. Buckley DL et al (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew Chem Int Ed Engl 51(46):11463–11467

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Flygare JA et al (2012) Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 55(9):4101–4113

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693

    PubMed  CAS  Google Scholar 

  104. Weisberg E et al (2010) Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 24(12):2100–2109

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Cai Q et al (2011) A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54(8):2714–2726

    PubMed  CAS  PubMed Central  Google Scholar 

  106. McManus DC et al (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23(49):8105–8117

    PubMed  CAS  Google Scholar 

  107. Allensworth JL et al (2013) Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Res Treat 137(2):359–371

    PubMed  CAS  Google Scholar 

  108. de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34(3):200–211

    PubMed  Google Scholar 

  109. Bodine SC et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708

    PubMed  CAS  Google Scholar 

  110. Maxwell PH et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    PubMed  CAS  Google Scholar 

  111. Deng L et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2):351–361

    PubMed  CAS  Google Scholar 

  112. Carrano AC et al (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199

    PubMed  CAS  Google Scholar 

  113. Winston JT et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13(3):270–283

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Vidal M (2009) Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression. Int J Dev Biol 53(2–3):355–370

    PubMed  CAS  Google Scholar 

  115. Paolino M et al (2011) Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J Immunol 186(4):2138–2147

    PubMed  CAS  Google Scholar 

  116. Nakahara T et al (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67(17):8014–8021

    PubMed  CAS  Google Scholar 

  117. Yamasaki S et al (2007) Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J 26(1):113–122

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Scheffner M et al (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495–505

    PubMed  CAS  Google Scholar 

  119. Shi D, Grossman SR (2010) Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biol Ther 10(8):737–747

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Chan CH et al (2013) Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3):556–568

    PubMed  CAS  Google Scholar 

  121. Ito T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350

    PubMed  CAS  Google Scholar 

  122. Goldenberg SJ et al (2010) Strategies for the identification of ubiquitin ligase inhibitors. Biochem Soc Trans 38(pt 1):132–136

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Davydov IV et al (2004) Assay for ubiquitin ligase activity: high-throughput screen for inhibitors of HDM2. J Biomol Screen 9(8):695–703

    PubMed  CAS  Google Scholar 

  124. Huang KS, Vassilev LT (2005) High-throughput screening for inhibitors of the Cks1-Skp2 interaction. Methods Enzymol 399:717–728

    PubMed  CAS  Google Scholar 

  125. Ungermannova D et al (2013) High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. J Biomol Screen 18(8):910–920

    PubMed  Google Scholar 

  126. Dy GK et al (2013) Phase Ib trial of the oral angiogenesis inhibitor pazopanib administered concurrently with erlotinib. Invest New Drugs 31(4):891–899

    PubMed  CAS  Google Scholar 

  127. Britten CD (2013) PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 71(6):1395–1409

    PubMed  CAS  Google Scholar 

  128. Sheppard KE et al (2013) Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. Eur J Cancer 49:3936–3944

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Mattern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mattern, M.R. et al. (2014). Proteasome Inhibitors Versus E3 Ligase Inhibitors for Cancer Therapy. In: Dou, Q. (eds) Resistance to Proteasome Inhibitors in Cancer. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-06752-0_12

Download citation

Publish with us

Policies and ethics