Skip to main content

Cardiovascular Adaptations to Anemia and the Vascular Endothelium in Sickle Cell Disease Pathophysiology

  • Chapter
  • First Online:
Sickle Cell Anemia

Abstract

The vascular endothelium is a heterogenous collection of cells whose actions contribute significantly to sickle cell disease pathophysiology. At the cellular level, the endothelium elaborates vasoactive, adhesive, and inflammatory signals that drive acute and chronic injury causing ultimately irreversible organ damage. The endothelium is also fundamentally involved in the cardiovascular adaptations to anemia. Vasodilation lowers systemic vascular resistance and allows higher cardiac output to maintain oxygen transport in an anemic state. Cardiovascular adaptations to anemia and hypoxia may play a role in the pathogenesis of sickle cell disease. Some measures of endothelium-dependent vasodilation appear to be impaired in people with sickle cell disease, but this may be due in part to the effects of chronic anemia. Endothelium-derived vasoactive molecules, such as endothelin-1 and nitric oxide, appear dysregulated and may also contribute to the vascular complications of sickle cell disease. The therapeutic potential of pharmacologically manipulating these molecules has not yet been achieved; however, evidence from patients treated with hydroxyurea and hematopoietic stem cell transplant shows that although it may be difficult to reverse pre-existing injury, effective therapies for sickle cell disease do change endothelial behavior. Ongoing investigations will determine how best to exploit our understanding of endothelial biology and pathobiology to develop new treatments for people with sickle cell disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adisa OA, Hu Y, Ghosh S, Aryee D, Osunkwo I, Ofori-Acquah SF (2013) Association between plasma free haem and incidence of vaso-occlusive episodes and acute chest syndrome in children with sickle cell disease. Br J Haematol 162(5):702–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aessopos A, Farmakis D, Tsironi M, Diamanti-Kandarakis E, Matzourani M, Fragodimiri C et al (2007) Endothelial function and arterial stiffness in sickle-thalassemia patients. Atherosclerosis 191(2):427–432

    Article  CAS  PubMed  Google Scholar 

  • Aird WC (2007a) Endothelial biomedicine, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Aird WC (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190

    Article  CAS  PubMed  Google Scholar 

  • Aird WC (2007c) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  • Alexy T, Pais E, Armstrong JK, Meiselman HJ, Johnson CS, Fisher TC (2006) Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion 46(6):912–918

    Article  PubMed  Google Scholar 

  • Almeida CB, Scheiermann C, Jang JE et al (2012) Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 120(14):2879–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida CB, Souza LEB, Leonardo FC et al (2015) Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood 126(6):711–720

    Article  CAS  PubMed  Google Scholar 

  • Alpert BS, Gilman PA, Strong WB et al (1981) Hemodynamic and ECG responses to exercise in children with sickle cell anemia. Am J Dis Child 135(4):362–366

    CAS  PubMed  Google Scholar 

  • Anand IS, Chandrashekhar Y, Wander GS, Chawla LS (1995) Endothelium-derived relaxing factor is important in mediating the high output state in chronic severe anemia. J Am Coll Cardiol 25(6):1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Anderson TJ, Uehata A, Gerhard MD et al (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26(5):1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Anjum F, Lazar J, Zein J, Jamaleddine G, Demetis S, Wadgaonkar R (2012) Characterization of altered patterns of endothelial progenitor cells in sickle cell disease related pulmonary arterial hypertension. Pulm Circ 2(1):54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoniades C, Shirodaria C, Leeson P et al (2009) Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J 30(9):1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Arias EJ, Derdeyn CP, Dacey RG, Zipfel GJ (2014) Advances and surgical considerations in the treatment of moyamoya disease. Neurosurgery 74(Suppl 1):S116–S125

    Article  PubMed  Google Scholar 

  • Aufradet E, Desouza G, Bourgeaux V et al (2013) Hypoxia/reoxygenation stress increases markers of vaso-occlusive crisis in sickle SAD mice. Clin Hemorheol Microcirc 54(3):297–312

    CAS  PubMed  Google Scholar 

  • Bachir D, Maurel A, Portos JL, Galacteros F (1993) Comparative evaluation of laser Doppler flux metering, bulbar conjunctival angioscopy, and nail fold capillaroscopy in sickle cell disease. Microvasc Res 45(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Bahl VK, Malhotra OP, Kumar D et al (1992) Noninvasive assessment of systolic and diastolic left ventricular function in patients with chronic severe anemia: a combined M-mode, two-dimensional, and Doppler echocardiographic study. Am Heart J 124(6):1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Balfour IC, Covitz W, Davis H, Rao PS, Strong WB, Alpert BS (1984) Cardiac size and function in children with sickle cell anemia. Am Heart J 108(2):345–350

    Article  CAS  PubMed  Google Scholar 

  • Balfour IC, Covitz W, Arensman FW, Eubig C, Garrido M, Jones C (1988) Left ventricular filling in sickle cell anemia. Am J Cardiol 61(4):395–399

    Article  CAS  PubMed  Google Scholar 

  • Barst RJ, Mubarak KK, Machado RF et al (2010) Exercise capacity and haemodynamics in patients with sickle cell disease with pulmonary hypertension treated with bosentan: results of the ASSET studies. Br J Haematol 149(3):426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher JD, Bryant CJ, Nguyen J et al (2003) Transgenic sickle mice have vascular inflammation. Blood 101(10):3953–3959

    Article  CAS  PubMed  Google Scholar 

  • Belcher JD, Chen C, Nguyen J et al (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123(3):377–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belfer I, Youngblood V, Darbari DS, Wang Z, Diaw L, Freeman L et al (2014) A GCH1 haplotype confers sex-specific susceptibility to pain crises and altered endothelial function in adults with sickle cell anemia. Am J Hematol 89(2):187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhassen L, Pelle G, Sediame S, Bachir D, Carville C, Bucherer C et al (2001) Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress–mediated vasodilation. Blood 97(6):1584–1589

    Article  CAS  PubMed  Google Scholar 

  • Benesch R, Benesch RE (1969) Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature 221(5181):618–622

    Article  CAS  PubMed  Google Scholar 

  • Benkerrou M (2002) Hydroxyurea corrects the dysregulated L-selectin expression and increased H2O2 production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood 99(7):2297–2303

    Article  CAS  PubMed  Google Scholar 

  • Bereal-Williams C, Machado RF, McGowan V, Chi A, Hunter CJ, Kato GJ et al (2012) Atorvastatin reduces serum cholesterol and triglycerides with limited improvement in vascular function in adults with sickle cell anemia. Haematologica 97(11):1768–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk BC, Alexander RW, Brock TA, Gimbrone MA, Webb RC (1986) Vasoconstriction: a new activity for platelet-derived growth factor. Science 232(4746):87–90

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin F, Verlhac S, Delatour RP et al (2014) Cerebral arterial velocities in SCA-children with abnormal doppler are reduced and normalized more frequently after transplantation than after transfusion program (French national trial “drepagreffe” AP-HP N°: NCT 01340404). Blood 124(21):561

    Google Scholar 

  • Billecke SS (2006) Contribution of whole blood to the control of plasma asymmetrical dimethylarginine. Am J Physiol Heart Circ Physiol 291(4):H1788–H1796

    Article  CAS  PubMed  Google Scholar 

  • Blum A, Yeganeh S, Peleg A et al (2005) Endothelial function in patients with sickle cell anemia during and after sickle cell crises. J Thromb Thrombolysis 19(2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Bodas P, Rotz S (2014) Cerebral vascular abnormalities in pediatric patients with sickle cell disease after hematopoietic cell transplant. J Pediatr Hematol Oncol 36(3):190–193

    Article  PubMed  Google Scholar 

  • Bosi G, Crepaz R, Gamberini MR et al (2003) Left ventricular remodelling, and systolic and diastolic function in young adults with β thalassaemia major: a Doppler echocardiographic assessment and correlation with haematological data. Heart 89(7):762–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouloumié A, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 41(3):773–780

    Article  PubMed  Google Scholar 

  • Bridges KR, Barabino GD, Brugnara C et al (1996) A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 88(12):4701–4710

    CAS  PubMed  Google Scholar 

  • Brittain JE, Hulkower B, Jones SK et al (2010) Placenta growth factor in sickle cell disease: association with hemolysis and inflammation. Blood 115(10):2014–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brousse V, Colin Y, Pereira C et al (2014) Erythroid adhesion molecules in sickle cell anaemia infants: insights into early pathophysiology. EBioMedicine 2(2):154–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MD, Wick TM, Eckman JR (2001) Activation of vascular endothelial cell adhesion molecule expression by sickle blood cells. Pediatr Pathol Mol Med 20(1):47–72

    Article  CAS  PubMed  Google Scholar 

  • Brun M, Bourdoulous S, Couraud PO, Elion J, Krishnamoorthy R, Lapoumeroulie C (2003) Hydroxyurea downregulates endothelin-1 gene expression and upregulates ICAM-1 gene expression in cultured human endothelial cells. Pharmacogenomics J 3(4):215–226

    Article  CAS  PubMed  Google Scholar 

  • Buchanan GR, Holtkamp CA (1985) Plasma levels of platelet and vascular prostaglandin derivatives in children with sickle cell anaemia. Thromb Haemost 54(2):394–396

    CAS  PubMed  Google Scholar 

  • Buehler PW, Baek JH, Lisk C et al (2012) Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism. Am J Physiol Lung Cell Mol Physiol 303(4):L312–L326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunting S, Moncada S, Vane JR (1977) Antithrombotic properties of vascular endothelium. Lancet 310(8047):1075–1076

    Article  Google Scholar 

  • Caldas MC, Meira ZA, Barbosa MM (2008) Evaluation of 107 patients with sickle cell anemia through tissue Doppler and myocardial performance index. J Am Soc Echocardiogr 21(10):1163–1167

    Article  PubMed  Google Scholar 

  • Camus SM, Gausserès B, Bonnin P et al (2012) Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood 120(25):5050–5058

    Article  CAS  PubMed  Google Scholar 

  • Camus SM, Moraes JAD, Bonnin P et al (2015) Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vaso-occlusions in sickle cell disease. Blood 25(24):3805–3814

    Article  CAS  Google Scholar 

  • Cardillo C, Kilcoyne CM, Cannon RO 3rd, Panza JA (1999) Attenuation of cyclic nucleotide-mediated smooth muscle relaxation in blacks as a cause of racial differences in vasodilator function. Circulation 99(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Celermajer D, Sorensen K, Gooch V et al (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340(8828):1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Chaar V, Laurance S, Lapoumeroulie C et al (2014) Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation. J Biol Chem 289(16):11512–11521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charache S, Terrin ML, Moore RD et al (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med 332(20):1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123(24):3818–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung ATW, Miller JW, Craig SM et al (2010) Comparison of real-time microvascular abnormalities in pediatric and adult sickle cell anemia patients. Am J Hematol 85(11):899–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien S, Usami S, Bertles JF (1970) Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest 49(4):623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho I-J, Mun YC, Kwon KH, Shin GJ (2014) Effect of anemia correction on left ventricular structure and filling pressure in anemic patients without overt heart disease. Korean J Intern Med 29(4):445–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Conran N, Fattori A, Saad STO, Costa FF (2004) Increased levels of soluble ICAM-1 in the plasma of sickle cell patients are reversed by hydroxyurea. Am J Hematol 76(4):343–347

    Article  CAS  PubMed  Google Scholar 

  • Conran N, Franco-Penteado CF, Costa FF (2009) Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin 33(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Cortese-Krott MM, Kelm M (2014) Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2:251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosby K, Partovi K, Crawford J et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Covas DT, de Lucena Angulo I, Vianna Bonini Palma P, Zago MA (2004) Effects of hydroxyurea on the membrane of erythrocytes and platelets in sickle cell anemia. Haematologica 89(3):273–280

    CAS  PubMed  Google Scholar 

  • Covitz W, Eubig C, Balfour IC et al (1983) Exercise-induced cardiac dysfunction in sickle cell anemia: a radionuclide study. Am J Cardiol 51(3):570–575

    Article  CAS  PubMed  Google Scholar 

  • Covitz W, Espeland M, Gallagher D, Hellenbrand W, Leff S, Talner N (1995) The heart in sickle cell anemia: the cooperative study of sickle cell disease (CSSCD). Chest 108(5):1214–1219

    Article  CAS  PubMed  Google Scholar 

  • Crawford JH, Isbell TS, Huang Z et al (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107(2):566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crecelius AR, Kirby BS, Voyles WF, Dinenno FA (2011) Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins. J Physiol 589(14):3671–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosby WH (1955) The metabolism of hemoglobin and bile pigment in hemolytic disease. Am J Med 18(1):112–122

    Article  CAS  PubMed  Google Scholar 

  • Cruz PRS, Lira RPC, Pereira Filho SAC et al (2014) Increased circulating PEDF and low sICAM-1 are associated with sickle cell retinopathy. Blood Cells Mol Dis 54(1):33–37

    Article  PubMed  CAS  Google Scholar 

  • Cummins EP, Berra E, Comerford KM et al (2006) Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc Natl Acad Sci U S A 103(48):18154–18159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alecy LG, Billecke SS (2010) Massive quantities of asymmetric dimethylarginine (ADMA) are incorporated in red blood cell proteins and may be released by proteolysis following hemolytic stress. Blood Cells Mol Dis 45(1):40

    Google Scholar 

  • Dasgupta T, Hebbel RP, Kaul DK (2006) Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Radic Biol Med 41(12):1771–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davids M, van Hell AJ, Visser M, Nijveldt RJ, van Leeuwen PAM, Teerlink T (2012) Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine. Am J Physiol Heart Circ Physiol 302(8):H1762–H1770

    Article  CAS  PubMed  Google Scholar 

  • Davila J, Manwani D, Vasovic L et al (2014) A novel inflammatory role for platelets in sickle cell disease. Platelets 24:1–4

    CAS  Google Scholar 

  • Davis LE, Hohimer AR, Giraud GD, Reller MD, Morton MJ (1996) Right ventricular function in chronically anemic fetal lambs. Am J Obstet Gynecol 174(4):1289–1294

    Article  CAS  PubMed  Google Scholar 

  • de Montalembert M, Aggoun Y, Niakate A, Szezepanski I, Bonnet D (2007) Endothelial-dependent vasodilation is impaired in children with sickle cell disease. Haematologica 92(12):1709–1710

    Article  PubMed  Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction testing and clinical relevance. Circulation 115(10):1285–1295

    PubMed  Google Scholar 

  • Delivoria-Papadopoulos M, Oski FA, Gottlieb AJ (1969) Oxygen-hemoglobulin dissociation curves: effect of inherited enzyme defects of the red cell. Science 165(3893):601–602

    Article  CAS  PubMed  Google Scholar 

  • Detterich J, Alexy T, Rabai M et al (2013) Low-shear red blood cell oxygen transport effectiveness is adversely affected by transfusion and further worsened by deoxygenation in sickle cell disease patients on chronic transfusion therapy. Transfusion 53(2):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detterich JA, Kato RM, Rabai M, Meiselman HJ, Coates TD, Wood JC (2015) Chronic transfusion therapy improves but does not normalize systemic and pulmonary vasculopathy in sickle cell disease. Blood 126(6):703–710

    Article  CAS  PubMed  Google Scholar 

  • Disch AC, Matziolis G, Reinke P, Perka C (2004) Intravenous Iloprost treatment for severe bone pain caused by sickle cell crisis. Thromb Haemost 91(5):1047–1049

    CAS  PubMed  Google Scholar 

  • Dobson SR, Holden KR, Nietert PJ et al (2002) Moyamoya syndrome in childhood sickle cell disease: a predictive factor for recurrent cerebrovascular events. Blood 99(9):3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Downes SM, Hambleton IR, Chuang EL, Lois N, Serjeant GR, Bird AC (2005) Incidence and natural history of proliferative sickle cell retinopathy. Ophthalmology 112(11):1869–1875

    Article  PubMed  Google Scholar 

  • Duits AJ, Rodriguez T, Schnog J-JB, the CURAMA Study Group (2006) Serum levels of angiogenic factors indicate a pro-angiogenic state in adults with sickle cell disease. Br J Haematol 134(1):116–119

    Article  CAS  PubMed  Google Scholar 

  • Durr E, Yu J, Krasinska KM et al (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22(8):985–992

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt RT, McMahon L, Duffy SJ et al (2003) Sickle cell anemia is associated with reduced nitric oxide bioactivity in peripheral conduit and resistance vessels. Am J Hematol 74(2):104–111

    Article  CAS  PubMed  Google Scholar 

  • Eckstein RW (1955) Development of interarterial coronary anastomoses by chronic anemia; disappearance following correction of anemia. Circ Res 3(3):306–310

    Article  CAS  PubMed  Google Scholar 

  • Edwards DJ, Prescilla RP, Fratarelli DA, Haritos D, Aranda JV (2004) Pharmacokinetics of rofecoxib in children. Clin Pharmacol Ther 75(2):P73

    Google Scholar 

  • Elagouz M, Jyothi S, Gupta B, Sivaprasad S (2010) Sickle cell disease and the eye: old and new concepts. Surv Ophthalmol 55(4):359–377

    Article  PubMed  Google Scholar 

  • Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS (2009) Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology (Bethesda) 24(2):107–116

    Article  CAS  Google Scholar 

  • El-Shanshory M, Badraia I, Donia A, Abd El-Hameed F, Mabrouk M (2013) Asymmetric dimethylarginine levels in children with sickle cell disease and its correlation to tricuspid regurgitant jet velocity. Eur J Haematol 91(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17(11):1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Escobar E, Jones NL, Rapaport E, Murray JF (1966) Ventricular performance in acute normovolemic anemia and effects of beta blockade. Am J Physiol 211(4):877–884

    CAS  PubMed  Google Scholar 

  • Fasano RM, Meier ER, Hulbert ML (2014) Cerebral vasculopathy in children with sickle cell anemia. Blood Cells Mol Dis doi:10.1016/j.bcmd.2014.08.007

    Google Scholar 

  • Fowler NO, Holmes JC (1975) Blood viscosity and cardiac output in acute experimental anemia. J Appl Physiol 39(3):453–456

    CAS  PubMed  Google Scholar 

  • Franceschi L, Cappellini M, Olivieri O (2011) Thrombosis and sickle cell disease. Semin Thromb Hemost 37(03):226–236

    Article  PubMed  CAS  Google Scholar 

  • Frei AC, Guo Y, Jones DW et al (2008) Vascular dysfunction in a murine model of severe hemolysis. Blood 12(2):398–405

    Article  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  PubMed  Google Scholar 

  • Gambero S, Canalli AA, Traina F et al (2007) Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties. Eur J Haematol 78(2):144–151

    CAS  PubMed  Google Scholar 

  • Ge Y, Ahn D, Stricklett PK et al (2005) Collecting duct-specific knockout of endothelin-1 alters vasopressin regulation of urine osmolality. Am J Physiol Renal Physiol 288(5):F912–F920

    Article  CAS  PubMed  Google Scholar 

  • Gee BE, Platt OS (1995) Sickle reticulocytes adhere to VCAM-1. Blood 85(1):268–274

    CAS  PubMed  Google Scholar 

  • Gerry JL Jr, Bulkley BH, Hutchins GM (1978) Clinicopathologic analysis of cardiac dysfunction in 52 patients with sickle cell anemia. Am J Cardiol 42(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Adisa OA, Chappa P et al (2013) Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest 123(11):4809–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill HS, Lam WC (2008) A screening strategy for the detection of sickle cell retinopathy in pediatric patients. Can J Ophthalmol 43(2):188–191

    Article  PubMed  Google Scholar 

  • Gladwin MT, Ofori-Acquah SF (2014) Erythroid DAMPs drive inflammation in SCD. Blood 123(24):3689–3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladwin MT, Shelhamer JH, Ognibene FP et al (2002) Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease. Br J Haematol 116(2):436–444

    Article  CAS  PubMed  Google Scholar 

  • Gladwin MT, Lancaster JR, Freeman BA, Schechter AN (2003a) Nitric oxide’s reactions with hemoglobin: a view through the SNO-storm. Nat Med 9(5):496–500

    Article  CAS  PubMed  Google Scholar 

  • Gladwin MT, Schechter AN, Ognibene FP et al (2003b) Divergent nitric oxide bioavailability in men and women with sickle cell disease. Circulation 107(2):271–278

    Article  CAS  PubMed  Google Scholar 

  • Gladwin MT, Kato GJ, Weiner D et al (2011) Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA 305(9):893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover RE, Ivy ED, Orringer EP, Maeda H, Mason RP (1999) Detection of nitrosyl hemoglobin in venous blood in the treatment of sickle cell anemia with hydroxyurea. Mol Pharmacol 55(6):1006–1010

    CAS  PubMed  Google Scholar 

  • Gonsalves CS, Li C, Mpollo MS et al (2015) Erythropoietin mediated expression of placenta growth factor is regulated via activation of hypoxia inducible factor-1α and post-transcriptionally by mir214 in sickle cell disease. Biochem J 468(3):409–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbach AM, Ackerman HC, Liu WM et al (2012) Infrared imaging of nitric oxide-mediated blood flow in human sickle cell disease. Microvasc Res 84(3):262–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graettinger JS, Parsons RL, Campbell JA (1963) A correlation of clinical and hemodynamic studies in patients with mild and severe anemia with and without congestive failure. Ann Intern Med 58:617–626

    Article  CAS  PubMed  Google Scholar 

  • Graido-Gonzalez E, Doherty JC, Bergreen EW, Organ G, Telfer M, McMillen MA (1998) Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood 92(7):2551–2555

    CAS  PubMed  Google Scholar 

  • Gross S, Godel JC (1971) Comparative studies of height and weight as a blood volume reference standard in normal children and children with sickle cell anemia. Am J Clin Pathol 155(6):662–670

    Article  Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D et al (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    Article  CAS  PubMed  Google Scholar 

  • Hadeed K, Hascoet S, Castex M-P, Munzer C, Acar P, Dulac Y (2014) Endothelial function and vascular properties in children with sickle cell disease. Echocardiography doi:10.1111/echo.12851

    Google Scholar 

  • Hammerman SI, Kourembanas S, Conca TJ, Tucci M, Brauer M, Farber HW (1997) Endothelin-1 production during the acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 156(1):280–285

    Article  CAS  PubMed  Google Scholar 

  • Hataishi R, Rodrigues AC, Neilan TG et al (2006) Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 291(1):H379–H384

    Article  CAS  PubMed  Google Scholar 

  • Hebbel RP (2014) Ischemia-reperfusion injury in sickle cell anemia. Hematol Oncol Clin North Am 28(2):181–198

    Article  PubMed  Google Scholar 

  • Hebbel RP, Yamada O, Moldow CF, Jacob HS, White JG, Eaton JW (1980) Abnormal adherence of sickle erythrocytes to cultured vascular endothelium. J Clin Invest 65(1):154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heistad DD, Abboud FM, Dickinson W (1980) Richards lecture: circulatory adjustments to hypoxia. Circulation 61(3):463–470

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Perera O, Pérez-Sala D, Navarro-Antolín J et al (1998) Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1101(12):2711–2719

    Article  Google Scholar 

  • Hillery CA, Du MC, Wang WC, Scott JP (2000) Hydroxyurea therapy decreases the in vitro adhesion of sickle erythrocytes to thrombospondin and laminin. Br J Haematol 109(2):322–327

    Article  CAS  PubMed  Google Scholar 

  • Hokanson D, Sumner D, Strandness D (1975) An electrically calibrated plethysmograph for direct measurement of limb blood flow. IEEE Trans Biomed Eng 22(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Hoover R, Rubin R, Wise G, Warren R (1979) Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood 54(4):872–876

    CAS  PubMed  Google Scholar 

  • Hoppe CC (2011) Novel therapies targeting the endothelium in sickle cell disease. Hemoglobin 35(5–6):530–546

    Article  CAS  PubMed  Google Scholar 

  • Hoppe CC (2014) Inflammatory mediators of endothelial injury in sickle cell disease. Hematol Oncol Clin North Am 28(2):265–286

    Article  PubMed  Google Scholar 

  • Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361(16):1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu L, Ataga KI, Gordeuk VR et al (2008) Tetrahydrobiopterin (6R-BH4): novel therapy for endothelial dysfunction in sickle cell disease. Blood 112(11):LB-5 (Abstract)

    Google Scholar 

  • Huie R, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18(4):195–199

    Article  CAS  PubMed  Google Scholar 

  • Huribal M, Kumar R, Cunningham ME, Sumpio BE, McMillen MA (1994) Endothelin-stimulated monocyte supernatants enhance neutrophil superoxide production. Shock 1(3):184–187

    Article  CAS  PubMed  Google Scholar 

  • Irwin DC, Baek JH, Hassell K et al (2015) Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration. Free Radic Biol Med 82:50–62

    Article  CAS  PubMed  Google Scholar 

  • Isbell TS, Sun CW, Wu C et al (2008) SNO-hemoglobin is not essential for red blood cell-dependent hypoxic vasodilation. Nat Med 14(7):773–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyamu EW, Cecil R, Parkin L, Woods G, Ohene-Frempong K, Asakura T (2005) Modulation of erythrocyte arginase activity in sickle cell disease patients during hydroxyurea therapy. Br J Haematol 131(3):389–394

    Article  CAS  PubMed  Google Scholar 

  • Janas J, Sitkiewicz D, Januszewicz A, Szczesniak C, Grenda R, Janas RM (2000) Endothelin-1 inactivating peptidase in the human kidney and urine. J Hypertens 18(4):475–483

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Telen MJ (2008) Adhesion molecules and hydroxyurea in the pathophysiology of sickle cell disease. Haematologica 93(4):481–485

    Article  PubMed  Google Scholar 

  • Joneckis CC, Ackley RL, Orringer EP, Wayner EA, Parise LV (1993) Integrin alpha 4 beta 1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood 82(12):3548–3555

    CAS  PubMed  Google Scholar 

  • Joyner MJ, Casey DP (2014) Muscle blood flow, hypoxia, and hypoperfusion. J Appl Physiol 2116(7):852–857

    Article  Google Scholar 

  • Kasar M, Bog˘a C, Yeral M, Asma S, Kozanoglu I, Ozdogu H (2014) Clinical significance of circulating blood and endothelial cell microparticles in sickle-cell disease. J Thromb Thrombolysis 38(2):167–175

    Google Scholar 

  • Kassim AA, DeBaun MR (2013) Sickle cell disease, vasculopathy, and therapeutics. Annu Rev Med 64:451–466

    Article  CAS  PubMed  Google Scholar 

  • Kato GJ, Wang Z, Machado RF, Blackwelder WC, Taylor JG, Hazen SL (2009) Endogenous nitric oxide synthase inhibitors in sickle cell disease: abnormal levels and correlations with pulmonary hypertension, desaturation, haemolysis, organ dysfunction and death. Br J Haematol 145(4):506–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato GJ (2015) Defective nitric oxide metabolism in sickle cell disease. Pediatr Blood Cancer 62(3):373–374

    Article  PubMed  Google Scholar 

  • Kaul DK, Hebbel RP (2000) Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest 106(3):411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Fabry ME, Costantini F, Rubin EM, Nagel RL (1995) In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest 96(6):2845–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Liu X-D, Fabry ME, Nagel RL (2000) Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse. Am J Physiol Heart Circ Physiol 278(6):H1799–H1806

    CAS  PubMed  Google Scholar 

  • Kaul DK, Zhang X, Dasgupta T, Fabry ME (2008) Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilators, hemolysis, and oxidative stress. Am J Physiol Heart Circ Physiol 295(1):H39–H47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehinde MO, Ogungbemi SI, Anigbogu CN, Jaja SI (2015) l-Arginine supplementation enhances antioxidant activity and erythrocyte integrity in sickle cell anaemia subjects. Pathophysiology 22(3):137–142

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Bugaj LJ, Oh YJ et al (2009) Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol (1985) 107(4):1249–1257

    Article  CAS  Google Scholar 

  • Kleinbongard P, Schulz R, Rassaf T et al (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107:2943–2951

    Article  CAS  PubMed  Google Scholar 

  • Klings ES, Machado RF, Barst RJ et al (2014) An official American thoracic society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am J Respir Crit Care Med 189(6):727–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Kojda G, Cheng YC, Burchfield J, Harrison DG (2001) Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene. Circulation 103(23):2839–2844

    Article  CAS  PubMed  Google Scholar 

  • Kulandavelu S, Balkan W, Hare JM (2015) Regulation of oxygen delivery to the body via hypoxic vasodilation. Proc Natl Acad Sci U S A 112(20):6254–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutlar A, Embury SH (2014) Cellular adhesion and the endothelium: P-selectin. Hematol Oncol Clin North Am 28(2):323–339

    Article  PubMed  Google Scholar 

  • Kuypers FA (2014) Hemoglobin s polymerization and red cell membrane changes. Hematol Oncol Clin North Am 28(2):155–179

    Article  PubMed  Google Scholar 

  • Landburg PP, Teerlink T, Muskiet FAJ, Duits AJ, Schnog J-JB, CURAMA study group (2008) Plasma concentrations of asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell patients but do not increase further during painful crisis. Am J Hematol 83(7):577–579

    Article  CAS  PubMed  Google Scholar 

  • Landburg PP, Nur E, Maria N et al (2009) Elevated circulating stromal-derived factor-1 levels in sickle cell disease. Acta Haematol 122(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Landburg PP, Teerlink T, Biemond BJ et al (2010) Plasma asymmetric dimethylarginine concentrations in sickle cell disease are related to the hemolytic phenotype. Blood Cells Mol Dis 44(4):229–232

    Article  CAS  PubMed  Google Scholar 

  • Lang JD, Teng X, Chumley P et al (2007) Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 117(9):2583–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leight L, Snider TH, Clifford GO, Hellems HK (1954) Hemodynamic studies in sickle cell anemia. Circulation 10(5):653–662

    Article  CAS  PubMed  Google Scholar 

  • Lester LA, Sodt PC, Hutcheon N, Arcilla RA (1990) Cardiac abnormalities in children with sickle cell anemia. Chest 98(5):1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Lindsay J Jr, Meshel JC, Patterson RH (1974) The cardiovascular manifestations of sickle cell disease. Arch Intern Med 133(4):643–651

    Article  PubMed  Google Scholar 

  • Lionnet F, Bachmeyer C, Stankovic K, Tharaux PL, Girot R, Aractingi S (2008) Efficacy of the endothelin receptor blocker bosentan for refractory sickle cell leg ulcers. Br J Haematol 142(6):991–992

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky HH, Sheikh NU, Katz DM (1987) Intravital microscopy of capillary hemodynamics in sickle cell disease. J Clin Invest 80(1):117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longenecker GL, Mankad V (1983) Decreased prostacyclin levels in sickle cell disease. Pediatrics 71(5):860–861

    CAS  PubMed  Google Scholar 

  • Lonsdorfer J, Bogui P, Otayeck A, Bursaux E, Poyart C, Cabannes R (1983) Cardiorespiratory adjustments in chronic sickle cell anemia. Bull Eur Physiopathol Respir 19(4):339–344

    CAS  PubMed  Google Scholar 

  • Lopes FCM, Ferreira R, Albuquerque DM et al (2014) In vitro and in vivo anti-angiogenic effects of hydroxyurea. Microvasc Res 94:106–113

    Article  CAS  PubMed  Google Scholar 

  • Lopes FCM, Traina F, Almeida CB et al (2015) Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea. Haematologica 100(6):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez BL, Kreshak AA, Morris CR, Davis-Moon L, Ballas SK, Ma XL (2003) L-arginine levels are diminished in adult acute vaso-occlusive sickle cell crisis in the emergency department. Br J Haematol 120(3):532–534

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein CJ, Morrell CN, Yamakuchi M (2005) Regulation of Weibel–Palade body exocytosis. Trends Cardiovasc Med 15(8):302–308

    Article  CAS  PubMed  Google Scholar 

  • Machado RF, Barst RJ, Yovetich NA et al (2011) Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood 118(4):855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack AK, McGowan Ii VR, Tremonti CK et al (2008) Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol 142(6):971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manfredi F, Spoto AP, Saltzman HA, Sieker HO (1960) Studies of peripheral circulation during sickle-cell crisis. Circulation 22(4):602–607

    Article  CAS  PubMed  Google Scholar 

  • Manodori AB, Barabino GA, Lubin BH, Kuypers FA (2000) Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood 95(4):1293–1300

    CAS  PubMed  Google Scholar 

  • Marshall JM (2001) Roles of adenosine and nitric oxide in skeletal muscle in acute and chronic hypoxia. Adv Exp Med Biol 502:349–363

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Yu AY, Jiang BH et al (1998) Cardiac hypertrophy in chronically anemic fetal sheep: Increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am J Obstet Gynecol 178(3):527–534

    Article  CAS  PubMed  Google Scholar 

  • Mascia L, Fedorko L, Stewart DJ et al (2001) Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Stroke 32(5):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Mathru M, Huda R, Solanki DR, Hays S, Lang JD (2007) Inhaled nitric oxide attenuates reperfusion inflammatory responses in humans. Anesthesiology 106(2):275–282

    Article  CAS  PubMed  Google Scholar 

  • Matsui NM, Borsig L, Rosen SD, Yaghmai M, Varki A, Embury SH (2001) P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood 98(6):1955–1962

    Google Scholar 

  • McCarron RM, Wang L, Stanimirovic DB, Spatz M (1993) Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neurosci Lett 156(1–2):31–34

    Article  CAS  PubMed  Google Scholar 

  • McMillen MA, Sumpio BE (1995) Endothelins: polyfunctional cytokines. J Am Coll Surg 180(5):621–637

    CAS  PubMed  Google Scholar 

  • Mehta P, Albiol L (1982) Prostacyclin and platelet aggregation in sickle cell disease. Pediatrics 70(3):354–359

    CAS  PubMed  Google Scholar 

  • Meier ER, Wright EC, Miller JL (2014) Reticulocytosis and anemia are associated with an increased risk of death and stroke in the newborn cohort of the cooperative study of sickle cell disease. Am J Hematol 89(9):904–906

    Article  PubMed  PubMed Central  Google Scholar 

  • Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA (1996) Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. Am J Physiol Heart Circ Physiol 270(4):H1435–H1440

    CAS  Google Scholar 

  • Miller VM, Vanhoutte PM (1988) Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol Heart Circ Physiol 255(3):H446–H451

    CAS  Google Scholar 

  • Miller VM, Aarhus LL, Vanhoutte PM (1986) Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol Heart Circ Physiol 251(3):H520–H527

    CAS  Google Scholar 

  • Minneci PC, Deans KJ, Zhi H et al (2005) Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest 115(12):3409–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minniti CP, Machado RF, Coles WA, Sachdev V, Gladwin MT, Kato GJ (2009) Endothelin receptor antagonists for pulmonary hypertension in adult patients with sickle cell disease. Br J Haematol 147(5):737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minniti CP, Delaney KM, Gorbach AM et al (2014) Vasculopathy, inflammation, and blood flow in leg ulcers of patients with sickle cell anemia. Am J Hematol 89(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitropoulos PG, Chatziralli IP, Parikakis EA, Peponis VG, Amariotakis GA, Moschos MM (2014) Intravitreal ranibizumab for stage IV proliferative sickle cell retinopathy: a first case report. Case Rep Ophthalmol Med 2014:1–6

    Google Scholar 

  • Mohan JS (2005) The angiopoietin/Tie-2 system in proliferative sickle retinopathy: relation to vascular endothelial growth factor, its soluble receptor Flt-1 and von Willebrand factor, and to the effects of laser treatment. Br J Ophthalmol 89(7):815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan JS, Lip GYH, Blann AD, Bareford D, Marshall JM (2011) Endothelium-dependent and endothelium-independent vasodilatation of the cutaneous circulation in sickle cell disease. Eur J Clin Invest 41(5):546–551

    Article  PubMed  Google Scholar 

  • Moncada S, Higgs A (2006a) The vascular endothelium II. Springer

    Google Scholar 

  • Moncada S, Higgs A (2006b) The vascular endothelium I. Springer

    Google Scholar 

  • Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263(5579):663–665

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Vane JR, Whittle BJ (1977) Relative potency of prostacyclin, prostaglandin E1 and D2 as inhibitors of platelet aggregation in several species. J Physiol 273(2):2P–4P

    CAS  PubMed  Google Scholar 

  • Moreira JA, Laurentino MR, Machado RPG et al (2015) Pattern of hemolysis parameters and association with fetal hemoglobin in sickle cell anemia patients in steady state. Rev Bras Hematol Hemoter 37(3):167–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris CR, Kuypers FA, Larkin S et al (2000) Arginine therapy: a novel strategy to induce nitric oxide production in sickle cell disease. Br J Haematol 111(2):498–500

    Article  CAS  PubMed  Google Scholar 

  • Morris C, Kato G, Poljakovic M et al (2005) Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA 294(1):81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CR, Kuypers FA, Lavrisha L et al (2013) A randomized, placebo-controlled trial of arginine therapy for the treatment of children with sickle cell disease hospitalized with vaso-occlusive pain episodes. Haematologica 98(9):1375–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Brief report: plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32(5):811–815

    CAS  PubMed  Google Scholar 

  • Murray JF, Escobar E (1968) Circulatory effects of blood viscosity: comparison of methemoglobinemia and anemia. J Appl Physiol 25(5):594–599

    CAS  PubMed  Google Scholar 

  • Mushemi-Blake S, Melikian N, Drasar E et al (2015) Pulmonary haemodynamics in sickle cell disease are driven predominantly by a high-output state rather than elevated pulmonary vascular resistance: a prospective 3-dimensional echocardiography/Doppler study. PLoS One 10(8), e0135472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadler SP, Zimpelmann JA, Hebert RL (1992) Endothelin inhibits vasopressin-stimulated water permeability in rat terminal inner medullary collecting duct. J Clin Invest 90(4):1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahavandi M, Wyche MQ, Perlin E, Tavakkoli F, Castro O (2000) Nitric oxide metabolites in sickle cell anemia patients after oral administration of hydroxyurea; hemoglobinopathy. Hematology 5(4):335–339

    CAS  PubMed  Google Scholar 

  • Nahavandi M, Millis RM, Tavakkoli F et al (2002) Arterialization of peripheral venous blood in sickle cell disease. J Natl Med Assoc 94(5):320–326

    PubMed  PubMed Central  Google Scholar 

  • Nambi P, Pullen M, Wu HL, Aiyar N, Ohlstein EH, Edwards RM (1992) Identification of endothelin receptor subtypes in human renal cortex and medulla using subtype-selective ligands. Endocrinology 131(3):1081–1086

    CAS  PubMed  Google Scholar 

  • Nielsen MJ, Møller HJ, Moestrup SK (2010) Hemoglobin and heme scavenger receptors. Antioxid Redox Signal 12(2):261–273

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Nouraie M, Campbell A et al (2009) Angiogenic and inflammatory markers of cardiopulmonary changes in children and adolescents with sickle cell disease. PLoS One 4(11):e7956

    Google Scholar 

  • Oishi R, Nonoguchi H, Tomita K, Marumo F (1991) Endothelin-1 inhibits AVP-stimulated osmotic water permeability in rat inner medullary collecting duct. Am J Physiol 261(6):F951–F956

    CAS  PubMed  Google Scholar 

  • Omodeo-Sale F, Cortelezzi L, Vommaro Z, Scaccabarozzi D, Dondorp AM (2010) Dysregulation of L-arginine metabolism and bioavailability associated to free plasma heme. Am J Physiol Cell Physiol 299:C148–C154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osarogiagbon UR, Choong S, Belcher JD, Vercellotti GM, Paller MS, Hebbel RP (2000) Reperfusion injury pathophysiology in sickle transgenic mice. Blood 96(1):314–320

    CAS  PubMed  Google Scholar 

  • Ou J, Ou Z, Jones DW et al (2003) L-4 F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation 107(18):2337–2341

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Rees DD, Ashton DS, Moncada S (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Kim M, Brown KM, D’Agati VD, Lee HT (2011) Paneth cell-derived interleukin-17A causes multiorgan dysfunction after hepatic ischemia and reperfusion injury. Hepatology 53(5):1662–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Gonsalves CS, Malik P, Kalra VK (2008) Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-1 alpha. Blood 112(3):856–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegelow CH, Colangelo L, Steinberg M, Wright EC, Smith J, Phillips G, Vichinsky E (1997) Natural history of blood pressure in sickle cell disease: risks for stroke and death associated with relative hypertension in sickle cell anemia. Am J Med 102(2):171–177

    Article  CAS  PubMed  Google Scholar 

  • Perelman N, Selvaraj SK, Batra S et al (2003) Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood 102(4):1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Phelan M, Perrine SP, Brauer M, Faller DV (1995) Sickle erythrocytes, after sickling, regulate the expression of the endothelin-1 gene and protein in human endothelial cells in culture. J Clin Invest 96(2):1145–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pianosi P, D’souza SJA, Charge TD, Béland MJ, Esseltine DW, Coates AL (1991) Cardiac output and oxygen delivery during exercise in sickle cell anemia. Am Rev Respir Dis 143(2):231–235

    Article  CAS  PubMed  Google Scholar 

  • Polanowska-Grabowska R, Wallace K, Field JJ et al (2010) P-selectin–mediated platelet-neutrophil aggregate formation activates neutrophils in mouse and human sickle cell disease. Arterioscler Thromb Vasc Biol 30(12):2392–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potoka KP, Gladwin MT (2015) Vasculopathy and pulmonary hypertension in sickle cell disease. Am J Physiol Lung Cell Mol Physiol 308(4):L314–L324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard KA Jr, Ou J, Ou Z et al (2004) Hypoxia-induced acute lung injury in murine models of sickle cell disease. Am J Physiol Lung Cell Mol Physiol 286(4):L705–L714

    Article  CAS  PubMed  Google Scholar 

  • Rakusan K, Cicutti N, Kolar F (2001) Effect of anemia on cardiac function, microvascular structure, and capillary hematocrit in rat hearts. Am J Physiol Heart Circ Physiol 280(3):H1407–H1414

    CAS  PubMed  Google Scholar 

  • Reiter CD, Wang X, Tanus-Santos JE et al (2002) Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8(12):1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Rivera A, Rotter MA, Brugnara C (1999) Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes. Am J Physiol Cell Physiol 277(4):C746–C754

    CAS  Google Scholar 

  • Rivera A, Jarolim P, Brugnara C (2002) Modulation of Gardos channel activity by cytokines in sickle erythrocytes. Blood 99(1):357–363

    Article  CAS  PubMed  Google Scholar 

  • Rodgers GP, Schechter AN, Noguchi CT, Klein HG, Nienhuis AW, Bonner RF (1990) Microcirculatory adaptations in sickle cell anemia: reactive hyperemia response. Am J Physiol Heart Circ Physiol 258(1):H113–H120

    CAS  Google Scholar 

  • Rodgers GP, Walker EC, Podgor MJ (1993) Is “relative” hypertension a risk factor for vaso-occlusive complications in sickle cell disease? Am J Med Sci 305(3):150–156

    Article  CAS  PubMed  Google Scholar 

  • Romero JR, Suzuka SM, Nagel RL, Fabry ME (2002) Arginine supplementation of sickle transgenic mice reduces red cell density and Gardos channel activity. Blood 99(4):1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Roy SB, Bhatia ML, Mathur VS, Virmani S (1963) Hemodynamic effects of chronic severe anemia. Circulation 28(3):346–356

    Article  CAS  PubMed  Google Scholar 

  • Rybicki AC, Benjamin LJ (1998) Increased levels of endothelin-1 in plasma of sickle cell anemia patients. Blood 92(7):2594–2596

    CAS  PubMed  Google Scholar 

  • Sabaa N, de Franceschi L, Bonnin P et al (2008) Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J Clin Invest 118(5):1924–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev V, Machado R, Shizukuda Y et al (2007) Diastolic dysfunction is an independent risk factor for death in patients with sickle cell disease. J Am Coll Cardiol 49(4):472–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Safo MK, Kato GJ (2014) Therapeutic strategies to alter the oxygen affinity of sickle hemoglobin. Hematol Oncol Clin North Am 28(2):217–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamoto TM, Canalli AA, Traina F et al (2013) Altered red cell and platelet adhesion in hemolytic diseases: hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria and sickle cell disease. Clin Biochem 46(18):1798–1803

    Article  CAS  PubMed  Google Scholar 

  • Şan M, Demirtaş M, Burgut R, Birand A, Başlamişh F (1998) Left ventricular systolic and diastolic functions in patients with sickle cell anemia. Int J Angiol 7(3):185–187

    Article  PubMed  Google Scholar 

  • Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW (2014) Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol 5:415

    Google Scholar 

  • Schnog JB, Jager EH, van der Dijs FPL et al (2004) Evidence for a metabolic shift of arginine metabolism in sickle cell disease. Ann Hematol 83(6):371–375

    Article  CAS  PubMed  Google Scholar 

  • Schnog JB, Teerlink T, van der Dijs FPL, Duits AJ, Muskiet FA, CURAMA Study Group (2005) Plasma levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell disease. Ann Hematol 84(5):282–286

    Google Scholar 

  • Schrage WG, Joyner MJ, Dinenno FA (2004) Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. J Physiol 557(2):599–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz RS, Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665

    Article  Google Scholar 

  • Scoffone HM, Krajewski M, Zorca S et al (2013) Effect of extended-release niacin on serum lipids and on endothelial function in adults with sickle cell anemia and low high-density lipoprotein cholesterol levels. Am J Cardiol 112(9):1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH (2005) Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet 37(4):435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeler RA, Royal JE, Powe L, Goldberg HR (1978) Moyamoya in children with sickle cell anemia and cerebrovascular occlusion. J Pediatr 193(5):808–810

    Article  Google Scholar 

  • Setty BNY, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99(5):1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Shaikh S (2008) Intravitreal bevacizumab (Avastin) for the treatment of proliferative sickle retinopathy. Indian J Ophthalmol 56(3):259

    Google Scholar 

  • Sher GD, Olivieri NF (1994) Rapid healing of chronic leg ulcers during arginine butyrate therapy in patients with sickle cell disease and thalassemia. Blood 84(7):2378–2380

    CAS  PubMed  Google Scholar 

  • Shiu YT, McIntire LV, Udden MM (2002) Sickle erythrocytes increase prostacyclin and endothelin-1 production by cultured human endothelial cells under flow conditions. Eur J Haematol 68(3):163–169

    Article  CAS  PubMed  Google Scholar 

  • Siqueira RC, Costa RA, Scott IU, Cintra LP, Jorge R (2006) Intravitreal bevacizumab (Avastin) injection associated with regression of retinal neovascularization caused by sickle cell retinopathy. Acta Ophthalmol Scand 84(6):834–835

    Article  PubMed  Google Scholar 

  • Solovey AA, Solovey AN, Harkness J, Hebbel RP (2001) Modulation of endothelial cell activation in sickle cell disease: a pilot study. Blood 97(7):1937–1941

    Article  CAS  PubMed  Google Scholar 

  • Solovey A, Kollander R, Shet A et al (2004) Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin. Blood 104(3):840–846

    Article  CAS  PubMed  Google Scholar 

  • SoRelle R (1998) Nobel prize awarded to scientists for nitric oxide discoveries. Circulation 98(22):2365–2366

    Article  CAS  PubMed  Google Scholar 

  • Sowemimo-Coker SO, Haywood LJ, Meiselman HJ, Francis RB (1992) Effects of normal and sickle erythrocytes on prostacyclin release by perfused human umbilical cord veins. Am J Hematol 40(4):276–282

    Article  CAS  PubMed  Google Scholar 

  • Sproule BJ, Halden ER, Miller WF (1958) A study of cardiopulmonary alterations in patients with sickle cell disease and its variants. J Clin Invest 37(3):486–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styles LA, Lubin B, Vichinsky E et al (1997) Decrease of very late activation antigen-4 and CD36 on reticulocytes in sickle cell patients treated with hydroxyurea. Blood 89(7):2554–2559

    CAS  PubMed  Google Scholar 

  • Sundaram N, Tailor A, Mendelsohn L et al (2010) High levels of placenta growth factor in sickle cell disease promote pulmonary hypertension. Blood 116(1):109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL, Greenough A (2004) Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr 164(3):162–165

    Article  PubMed  CAS  Google Scholar 

  • Telen MJ (2014) Cellular adhesion and the endothelium. Hematol Oncol Clin North Am 28(2):341–354

    Google Scholar 

  • Tharaux PL, Hagège I, Placier S et al (2005) Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol Dial Transplant 20(11):2408–2413

    Google Scholar 

  • Tharaux PL, Girot R, Kanfer A et al (2002) Cutaneous microvascular blood flow and reactivity in patients with homozygous sickle cell anaemia. Eur J Haematol 68(6):327–331

    Article  PubMed  Google Scholar 

  • Tordjman R, Delaire S, Plouët J et al (2001) Erythroblasts are a source of angiogenic factors. Blood 97(7):1968–1974

    Article  CAS  PubMed  Google Scholar 

  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS (2002) Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A 99(5):3047–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uematsu M, Ohara Y, Navas JP et al (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269(6 Pt 1):C1371–C1378

    CAS  PubMed  Google Scholar 

  • Usami S, Chien S, Scholtz PM, Bertles JF (1975) Effect of deoxygenation on blood rheology in sickle cell disease. Microvasc Res 9(3):324–334

    Article  CAS  PubMed  Google Scholar 

  • van Beers EJ, Yang Y, Raghavachari N et al (2015) Iron, inflammation, and early death in adults with sickle cell disease. Circ Res 116(2):298–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varat MA, Adolph RJ, Fowler NO (1972) Cardiovascular effects of anemia. Am Heart J 83(3):415–426

    Article  CAS  PubMed  Google Scholar 

  • Vinchi F, De Franceschi L, Ghigo A et al (2013) Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 127(12):1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Voskaridou E, Christoulas D, Terpos E (2012) Sickle-cell disease and the heart: review of the current literature. Br J Haematol 157(6):664–673

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Luo W, Wang J et al (2013) Paradoxical protection from atherosclerosis and thrombosis in a mouse model of sickle cell disease. Br J Haematol 162(1):120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mendelsohn L, Rogers H et al (2014) Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Krüppel-like factor. Blood 124(6):946–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wautier MP, HéRon E, Picot J, Colin Y, Hermine O, Wautier JL (2011) Red blood cell phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion: central retinal vein occlusion and RBC adhesion. J Thromb Haemost 9(5):1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Weksler BB, Marcus AJ, Jaffe EA (1977) Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci U S A 74(9):3922–3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood KC, Cortese-Krott MM, Kovacic JC et al (2013) Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol 33(8):1861–1871

    Article  CAS  PubMed  Google Scholar 

  • Wun T, Paglieroni T, Rangaswami A et al (1998) Platelet activation in patients with sickle cell disease. Br J Haematol 100(4):741–749

    Article  CAS  PubMed  Google Scholar 

  • Wyche MQ, Perlin E, Millis RM, Nahavandi M, Tavakkoli F (2003) Arterialization of venous blood for differentiation of sickle cell subjects in vaso-occlusive crisis. Hematology 8(6):421–428

    Article  PubMed  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415

    Article  CAS  PubMed  Google Scholar 

  • Yuditskaya S, Tumblin A, Hoehn G et al (2009) Proteomic identification of altered apolipoprotein patterns in pulmonary hypertension and vasculopathy of sickle cell disease. Blood 113(5):1122–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawar SD, Vyawahare MA, Nerkar M, Jawahirani AR (2005) Non-invasive detection of endothelial dysfunction in sickle cell disease by Doppler ultrasonography. J Assoc Physicians India 53:677–680

    CAS  PubMed  Google Scholar 

  • Zhang Y, Berka V, Song A et al (2014) Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. J Clin Invest 124(6):2750–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Hess DT, Qian Z et al (2015) Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc Natl Acad Sci U S A 112(20):6425–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoll PM, Wessler S, Schlesinger MJ (1951) Interarterial coronary anastomoses in the human heart, with particular reference to anemia and relative cardiac anoxia. Circulation 4(6):797–815

    Article  CAS  PubMed  Google Scholar 

  • Zoll PM, Norman LR, Cassin S (1952) The effects of vasomotor drugs and of anemia upon interarterial coronary anastomoses. Circulation 6(6):832–842

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans C. Ackerman M.D., D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pecker, L.H., Ackerman, H.C. (2016). Cardiovascular Adaptations to Anemia and the Vascular Endothelium in Sickle Cell Disease Pathophysiology. In: Costa, F., Conran, N. (eds) Sickle Cell Anemia. Springer, Cham. https://doi.org/10.1007/978-3-319-06713-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06713-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06712-4

  • Online ISBN: 978-3-319-06713-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics