Skip to main content

Estimating a Rasch Model via Fuzzy Empirical Probability Functions

  • Conference paper
  • First Online:
Analysis and Modeling of Complex Data in Behavioral and Social Sciences

Abstract

The joint maximum likelihood estimation of the parameters of the Rasch model is hampered by several drawbacks, the most relevant of which are that: (1) the estimates are not available for item or person with perfect scores; (2) the item parameter estimates are severely biased, especially for short tests. To overcome both these problems, in this paper a new method is proposed, based on a fuzzy extension of the empirical probability function and the minimum Kullback–Leibler divergence estimation approach. The new method warrants the existence of finite estimates for both person and item parameters and results very effective in reducing the bias of joint maximum likelihood estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, E. B. (1980). Discrete statistical models with social sciences applications. Amsterdam: North-Holland.

    Google Scholar 

  • Andrich, D., Lyne, A., Sheridan, B., & Luo, G. (2003). RUMM 2020 [Computer Software]. Perth, Australia: RUMM Laboratory.

    Google Scholar 

  • Bartolucci, F., Bellio, R., Salvan, A., & Sartori, N. (2012). Modified profile likelihood for panel data models. Available at SSRN repository: http://ssrn.com/abstract=2000666.

  • Bertoli-Barsotti, L. (2005). On the existence and uniqueness of JML estimates for the partial credit model. Psychometrika, 70, 517–531.

    Article  MathSciNet  Google Scholar 

  • Bertoli-Barsotti, L., & Punzo, A. (2012). Comparison of two bias reduction techniques for the Rasch model. Electronic Journal of Applied Statistical Analysis, 5(3), 360–366.

    MathSciNet  Google Scholar 

  • Bertoli-Barsotti, L., & Bacci, S. (2014). Identifying Guttman structures in incomplete Rasch datasets. Communications in Statistics – Theory and Methods, 43(3), 470–497. doi:10.1080/03610926.2012.66555.

  • Cohen, J., Chan, T., Jiang, T., & Seburn, M. (2008). Consistent estimation of Rasch item parameters and their standard errors under complex sample designs. Applied Psychological Measurement, 32, 289–310.

    Article  MathSciNet  Google Scholar 

  • Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46, 59–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Haldane, J. B. S. (1956). The estimation and significance of the logarithm of a ratio of frequencies. Annals of Human Genetics, 20, 309–311.

    Article  MATH  Google Scholar 

  • Jeffreys, H. (1939). Theory of probability. Oxford: Oxford University Press.

    Google Scholar 

  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London. Series A: Mathematics and Physical Sciences, 186, 453–461.

    Article  MATH  MathSciNet  Google Scholar 

  • Linacre, J. M. (2009). WINSTEPS®. Rasch measurement computer program. Beaverton, OR: Winsteps.com.

    Google Scholar 

  • Molenaar, I. W. (1995). Estimation of item parameters. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 39–51). New York: Springer.

    Chapter  Google Scholar 

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Warm, T. A. (1989). Weighted likelihood estimation of in item response theory. Psychometrika, 54, 427–450.

    Article  MathSciNet  Google Scholar 

  • Wright, B. D. (1988). The efficacy of unconditional maximum likelihood bias correction: Comment on Jansen, van den Wollenberg, and Wierda. Applied Psychological Measurement, 12, 315–318.

    Article  Google Scholar 

  • Wu, M. L., Adams, R. J., Wilson, M. R., & Haldane, S. A. (2007). ACER ConQuest: Generalised item response modeling software - version 2.0. ACER Press edition

    Google Scholar 

Download references

Acknowledgments

This research was partially funded in the framework of the project “Opportunity for young researchers”, reg. no. CZ.1.07/2.3.00/30.0016, supported by Operational Programme Education for Competitiveness and co-financed by the European Social Fund and the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Bertoli-Barsotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bertoli-Barsotti, L., Lando, T., Punzo, A. (2014). Estimating a Rasch Model via Fuzzy Empirical Probability Functions. In: Vicari, D., Okada, A., Ragozini, G., Weihs, C. (eds) Analysis and Modeling of Complex Data in Behavioral and Social Sciences. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-06692-9_4

Download citation

Publish with us

Policies and ethics