Advertisement

Stochastic Models Including PH Distributions and MAPs

  • Peter Buchholz
  • Jan Kriege
  • Iryna Felko
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

PHDs and MAPs are used to define inter-event times at various levels and in different model types. Originally, phase-type representations of inter-event times are used in models that are mapped on Markov processes and are solved numerically. However, this is only one application area.

Keywords

Failure Time Arrival Process Service Process Repair Time Discrete Event System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 8.
    Badescu, A.L., Drekic, S., Landriault, D.: Analysis of a threshold divided strategy for a MAP risk model. Scand. Actuar. J. 4, 227–247 (2007)CrossRefMathSciNetGoogle Scholar
  2. 9.
    Badescu, A.L., Cheung, E.K., Landriault, D.: Dependent risk models with bivariate phase-type distributions. J. Appl. Probab. 46(1), 113–131 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 10.
    Balsamo, S., de Nitto Persone, V., Onvural, R.: Analysis of Queueing Networks with Blocking. International Series on Operations Research and Management Science. Kluwer Academic Publishers, Boston (2001)Google Scholar
  4. 16.
    Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Oxford Science Publications, Oxford (2005)CrossRefzbMATHGoogle Scholar
  5. 17.
    Bladt, M.: A review on phase-type distributions and their use in risk theory. Astin Bull. 35(1), 145–161 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 27.
    Brickner, C., Indrawan, D., Williams, D., Chakravarthy, S.R.: Simulation of a stochastic model for a service system. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of the Winter Simulation Conference (WSC), pp. 1636–1647 (2010)Google Scholar
  7. 28.
    Buchholz, P.: A class of hierarchical queueing networks and their analysis. Queueing Syst. 15(1), 59–80 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 30.
    Buchholz, P.: Structured analysis approaches for large Markov chains. Appl. Numer. Math. 31(4), 375–404 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 34.
    Buchholz, P., Kriege, J.: Markov modeling of availability and unavailability data. In: Proceedings of the 10th European Dependable Computing Conference (EDCC), IEEE Computer Society, Newcastle upon Tyne (2014)Google Scholar
  10. 43.
    Ching, W.K.: Iterative Methods for Queuing and Manufacturing Systems. Monographs in Mathematics. Springer, London (2001)CrossRefzbMATHGoogle Scholar
  11. 46.
    Crowder, M.J., Kimber, A.C., Smith, R.L., Sweeting, T.J.: Statistical Analysis of Reliability Data. CRC Press, Boca Raton (1994)Google Scholar
  12. 49.
    Dayar, T.: Analyzing Markov Chains Using Kronecker Products. Briefs in Mathematics. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  13. 50.
    Dayar, T., Meriç, A.: Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes. Ann. OR 164(1), 193–210 (2008)CrossRefzbMATHGoogle Scholar
  14. 52.
    El-Rayes, A., Kwiatkowska, M., Norman, G.: Solving infinite stochastic process algebra models through matrix-geometric methods. In: Hillston, J., Silva, M. (eds.) Proceedings of the 7th Process Algebras and Performance Modelling Workshop, pp. 41–62 (1999)Google Scholar
  15. 55.
    Fackrell, M.: Modelling healthcare systems with phase-type distributions. Health Care Manag. Sci. 12, 11–26 (2009)CrossRefGoogle Scholar
  16. 61.
    Garg, L., Masala, G., McClean, S.I., Micocci, M., Cannas, G.: Using phase type distributions for modelling HIV disease progression. In: Proceedings of the 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–4. IEEE, Computer Society (2012)Google Scholar
  17. 64.
    Haddad, S., Moreaux, P., Chiola, G.: Efficient handling of phase-type distributions in generalized stochastic Petri nets. In: Azéma, P., Balbo, G. (eds.) Proceedings of the 18th International Conference on ICATPN. Lecture Notes in Computer Science, vol. 1248, pp. 175–194. Springer, Berlin (1997)Google Scholar
  18. 70.
    Heindl, A., Telek, M.: Output models of MAP/PH/1(/K) queues for an efficient network decomposition. Perform. Eval. 49(1/4), 321–339 (2002)CrossRefzbMATHGoogle Scholar
  19. 71.
    Hornig, R., Varga, A.: An Overview of the OMNeT++ Simulation Environment. In: Proceedings of 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools) (2008)Google Scholar
  20. 79.
    Horváth, A., Horváth, G., Telek, M.: A traffic based decomposition of two-class queueing network with priority service. Comput. Netw. 53(8), 1235–1248 (2009)CrossRefzbMATHGoogle Scholar
  21. 81.
    Horváth, G., Reinecke, P., Telek, M., Wolter, K.: Efficient generation of PH-distributed random variates. In: Al-Begain, K., Fiems, D., Vincent, J.M. (eds.) Proceedings of the Analytical and Stochastic Modeling Techniques and Applications (ASMTA). Lecture Notes in Computer Science, vol. 7314, pp. 271–285. Springer, Berlin (2012)CrossRefGoogle Scholar
  22. 84.
    The internet traffic archive. http://ita.ee.lbl.gov/
  23. 85.
    Iosup, A., Jan, M., Sonmez, O., Epema, D.H.: On the dynamic resource availability in grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing (2007)Google Scholar
  24. 86.
    Javadi, B., Kondo, D., Iosup, A., Epema, D.H.J.: The failure trace archive: enabling the comparison of failure measurements and models of distributed systems. J. Parallel Distrib. Comput. 73(8), 1208–1223 (2013)CrossRefGoogle Scholar
  25. 92.
    Kelton, W.D., Sadowski, R.P., Sadowski, D.A.: Simulation with Arena, 4th edn. McGraw-Hill, New York (2007)Google Scholar
  26. 95.
    Kleinrock, L.: Queueing Systems, vol. 1. Wiley, New York (1975)zbMATHGoogle Scholar
  27. 96.
    Kleinrock, L.: Queueing Systems, vol. 2. Wiley, New York (1976)zbMATHGoogle Scholar
  28. 99.
    Kriege, J., Buchholz, P.: Simulating stochastic processes with OMNeT++. In: Liu, J., Quaglia, F., Eidenbenz, S., Gilmore, S. (eds.) Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques (SimuTools’11), pp. 367–374. ICST/ACM, Brussels (2011)Google Scholar
  29. 104.
    Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. Society for Industrial and Applied Mathematics, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  30. 105.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, Boston (2000). ISBN 0-07-059292-6Google Scholar
  31. 108.
    Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative system performance- computer system analysis using queueing network models. Prentice Hall, Upper Saddle River (1984)Google Scholar
  32. 122.
    Montoro-Cazorla, D., Pérez-Ocón, R.: A maintenance model with failures and inspection following Markovian arrival processes and two repair modes. Eur. J. Oper. Res. 186(2), 694–707 (2008)CrossRefzbMATHGoogle Scholar
  33. 125.
    Neuts, M.F.: Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore (1981)zbMATHGoogle Scholar
  34. 126.
    Neuts, M.F., Meier, K.S.: On the use of phase type distributions in reliability modelling of systems with two components. OR Spectr. 2(4), 227–234 (1981)CrossRefzbMATHGoogle Scholar
  35. 145.
    Riska, A., Smirni, E.: ETAQA solutions for infinite Markov processes with repetitive structure. INFORMS J. Comput. 19(2), 215–228 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 147.
    Ruiz-Castro, J.E., Fernández-Villodre, G., Pérez-Ocón, R.: Discrete repairable systems with external and internal failures under phase-type distributions. IEEE Trans. Reliab. 58(1), 41–52 (2009)CrossRefGoogle Scholar
  37. 151.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  38. 152.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar

Copyright information

© Peter Buchholz, Jan Kriege, Iryna Felko 2014

Authors and Affiliations

  • Peter Buchholz
    • 1
  • Jan Kriege
    • 1
  • Iryna Felko
    • 1
  1. 1.Department of Computer ScienceTechnical University of DortmundDortmundGermany

Personalised recommendations