Advertisement

Parameter Fitting of MAPs

  • Peter Buchholz
  • Jan Kriege
  • Iryna Felko
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Fitting the parameters of a MAP is much more complex than the parameter fitting for PHDs. The major reasons for the complexity of the fitting problem are missing canonical representations for MAPs and the necessity to consider long traces to adequately capture the correlation.

Keywords

Feasible Region Counting Process Joint Moment Canonical Representation Autocorrelation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 18.
    Bobbio, A., Cumani, A.: ML estimation of the parameters of a PH distribution in triangular canonical form. In: Balbo, G., Serazzi, G. (eds.) Computer Performance Evaluation, pp. 33–46. Elsevier, Amsterdam (1992)Google Scholar
  2. 22.
    Bodrog, L., Heindl, A., Horváth, G., Telek, M., Horváth, A.: A Markovian canonical form of second-order matrix-exponential processes. Eur. J. Oper. Res. 160(1), 51–68 (2008)zbMATHGoogle Scholar
  3. 24.
    Bodrog, L., Buchholz, P., Kriege, J., Telek, M.: Canonical form based MAP(2) fitting. In: Proceedings of the 7th International Conference on the Quantitative Evaluation of Systems (QEST), pp. 107–116. IEEE Computer Society, Williamsburg (2010)Google Scholar
  4. 25.
    Breuer, L.: An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann. OR 112(1–4), 123–138 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 26.
    Breuer, L., Kume, A.: An EM algorithm for Markovian arrival processes observed at discrete times. In: Müller-Clostermann, B., Echtle, K., Rathgeb, E. (eds.) Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance. Lecture Notes in Computer Science, vol. 5987, pp. 242–258. Springer, Berlin (2010)Google Scholar
  6. 31.
    Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) Computer Performance Evaluation/TOOLS. Lecture Notes in Computer Science, vol. 2794, pp. 218–236. Springer, New York (2003)Google Scholar
  7. 32.
    Buchholz, P., Kriege, J.: A heuristic approach for fitting MAPs to moments and joint moments. In: Proceedings of the 6th International Conference on the Quantitative Evaluation of Systems (QEST), pp. 53–62. IEEE Computer Society, Budapest (2009)Google Scholar
  8. 33.
    Buchholz, P., Kriege, J.: Equivalence transformations for acyclic phase type distributions. Technical Report 827, Department of Computer Science, TU Dortmund. http://www.cs.uni-dortmund.de/nps/de/Forschung/Publikationen/Graue_Reihe1/Ver__ffentlichungen_2009/827.pdf (2009)
  9. 39.
    Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)CrossRefGoogle Scholar
  10. 40.
    Buchholz, P., Felko, I., Kriege, J.: Transformation of acyclic phase type distributions for correlation fitting. In: Proceedings of the Analytical and Stochastic Modeling Techniques and Applications (ASMTA). Lecture Notes in Computer Science, pp. 96–111. Springer, Berlin (2013)Google Scholar
  11. 42.
    Casale, G., Zhang, E.Z., Smirni, E.: Trace data characterization and fitting for Markov modeling. Perform. Eval. 67(2), 61–79 (2010)CrossRefGoogle Scholar
  12. 47.
    Cumani, A.: On the canonical representation of homogeneous Markov processes modeling failure-time distributions. Micorelectron. Reliab. 22(3), 583–602 (1982)CrossRefMathSciNetGoogle Scholar
  13. 82.
    Horváth, G., Telek, M., Buchholz, P.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag-correlation. In: Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems (QEST), pp. 124–133. IEEE CS Press, Torino (2005)Google Scholar
  14. 84.
    The internet traffic archive. http://ita.ee.lbl.gov/
  15. 97.
    Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)CrossRefGoogle Scholar
  16. 105.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, Boston (2000). ISBN 0-07-059292-6Google Scholar
  17. 107.
    Lawson, C.L., Hanson, B.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)zbMATHGoogle Scholar
  18. 118.
    Mészáros, A., Telek, M.: A two-phase MAP fitting method with APH interarrival time distribution. In: Proceedings of the Winter Simulation Conference. ACM, Berlin (2012)Google Scholar
  19. 133.
    Okamura, H., Dohi, T., Trivedi, K.S.: Markovian arrival process parameter estimation with group data. IEEE/ACM Trans. Netw. 17(4), 1326–1339 (2009)CrossRefGoogle Scholar
  20. 134.
    Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Perform. Eval. 68(10), 938–954 (2011)CrossRefGoogle Scholar

Copyright information

© Peter Buchholz, Jan Kriege, Iryna Felko 2014

Authors and Affiliations

  • Peter Buchholz
    • 1
  • Jan Kriege
    • 1
  • Iryna Felko
    • 1
  1. 1.Department of Computer ScienceTechnical University of DortmundDortmundGermany

Personalised recommendations