Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1072 Accesses

Abstract

Quantitative analysis of man-made systems like computer systems, communication networks, manufacturing plants, logistics networks, to mention only few examples, is often done by means of discrete event models that are analyzed numerically [152] or by simulation [105]. One key issue in these models is the adequate modeling of the load which describes the occurrence of events, let it be customer arrivals in queueing networks, failure times in reliability models or packet lengths in simulation models of computer networks. In more abstract terms one can think of arrival, service or failure times that are part of a model. We will use the term inter-event times to capture the different quantities in a model. Inter-event times are characterized by random variables or stochastic processes generating non-negative numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfa, A.S., Neuts, M.F.: Modelling vehicular traffic using the discrete time Markovian arrival process. Transport. Sci. 29(2), 109–117 (1995)

    Article  MATH  Google Scholar 

  2. Asmussen, S., Bladt, M.: Point processes with finite-dimensional conditional probabilities. Stoch. Process. Their Appl. 82, 127–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bause, F., Buchholz, P., Kriege, J.: A comparison of Markovian arrival processes and ARMA/ARTA processes for the modelling of correlated input processes. In: Proceedings of the Winter Simulation Conference (2009)

    Google Scholar 

  4. Biller, B., Gunes, C.: Introduction to simulation input modeling. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of the Winter Simulation Conference (WSC), pp. 49–58 (2010)

    Google Scholar 

  5. Bobbio, A., Horváth, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions: properties and a parameter estimation algorithm. Perform. Eval. 54(1), 1–32 (2003)

    Article  Google Scholar 

  6. Breuer, L.: An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann. OR 112(1–4), 123–138 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brickner, C., Indrawan, D., Williams, D., Chakravarthy, S.R.: Simulation of a stochastic model for a service system. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of the Winter Simulation Conference (WSC), pp. 1636–1647 (2010)

    Google Scholar 

  8. Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) Computer Performance Evaluation/TOOLS. Lecture Notes in Computer Science, vol. 2794, pp. 218–236. Springer, New York (2003)

    Google Scholar 

  9. Buchholz, P., Kriege, J.: A heuristic approach for fitting MAPs to moments and joint moments. In: Proceedings of the 6th International Conference on the Quantitative Evaluation of Systems (QEST), pp. 53–62. IEEE Computer Society, Budapest (2009)

    Google Scholar 

  10. Buchholz, P., Telek, M.: Rational arrival processes associated to labelled Markov processes. J. Appl. Probab. 49(1), 40–59 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buchholz, P., Telek, M.: On minimal representations of rational arrival processes. Ann. Oper. Res. 202(1), 35–58 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: simple yet effective trace fitting using Markovian arrival processes. In: Proceedings of the 5th International Conference on the Quantitative Evaluation of Systems (QEST), pp. 83–92. IEEE Computer Society, St. Malo (2008)

    Google Scholar 

  13. Dayar, T.: On moments of discrete phase-type distributions. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) Proceedings of the EPEW/WS-FM. Lecture Notes in Computer Science, vol. 3670, pp. 51–63. Springer, New York (2005)

    Google Scholar 

  14. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform. Eval. 31, 245–279 (1998)

    Article  Google Scholar 

  15. Goseva-Popstojanova, K., Trivedi, K.S.: Effects of failure correlation on software in operation. In: Proceedings of the 2000 Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 69–76. IEEE Computer Society, Los Angeles (2000)

    Google Scholar 

  16. Heckmüller, S., Wolfinger, B.E.: Using load transformations for the specification of arrival processes in simulation and analysis. Simulation 85(8), 485–496 (2009)

    Article  Google Scholar 

  17. Horváth, A., Telek, M.: Markovian modeling of real data traffic: Heuristic phase type and MAP fitting of heavy tailed and fractal like samples. In: Calzarossa, M.C., Tucci, S. (eds.) Proceedings of the Performance 2002. Lecture Notes in Computer Science, vol. 2459, pp. 405–434. Springer, Berlin (2002)

    Google Scholar 

  18. Horváth, G., Telek, M., Buchholz, P.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag-correlation. In: Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems (QEST), pp. 124–133. IEEE CS Press, Torino (2005)

    Google Scholar 

  19. Kelton, W.D., Sadowski, R.P., Sadowski, D.A.: Simulation with Arena, 4th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  20. Khayari, R.E.A., Sadre, R., Haverkort, B.: Fitting world-wide web request traces with the EM-algorithm. Perform. Eval. 52, 175–191 (2003)

    Article  Google Scholar 

  21. Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)

    Article  Google Scholar 

  22. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  23. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, Boston (2000). ISBN 0-07-059292-6

    Google Scholar 

  24. Law, A.M., McComas, M.G.: ExpertFit distribution-fitting software: how the ExpertFit distribution-fitting software can make your simulation models more valid. In: Chick, S.E., Sanchez, P.J., Ferrin, D.M., Morrice, D.J. (eds.) Proceedings of the Winter Simulation Conference, pp. 169–174. ACM, Berlin (2003)

    Google Scholar 

  25. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

    Article  Google Scholar 

  26. Lipsky, L.: Queueing Theory: A Linear Algebraic Approach. Springer, New York (2008)

    Google Scholar 

  27. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Neuts, M.F.: Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  29. Nightingale, E.B., Douceur, J.R., Orgovan, V.: Cycles, cells and platters: an empirical analysis of hardware failures on a million consumer PCs. In: Kirsch, C.M., Heiser, G. (eds.) Proceedings of the EuroSys, pp. 343–356. ACM, Salzburg (2011)

    Google Scholar 

  30. O’Cinneide, C.A.: Phase-type distributions: open problems and a few properties. Stoch. Model. 15(4), 731–757 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Okamura, H., Dohi, T., Trivedi, K.S.: Markovian arrival process parameter estimation with group data. IEEE/ACM Trans. Netw. 17(4), 1326–1339 (2009)

    Article  Google Scholar 

  32. Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw. 3(3), 226–244 (1995)

    Article  Google Scholar 

  33. Rahnamay-Naeini, M., Pezoa, J.E., Azar, G., Ghani, N., Hayat, M.M.: Modeling stochastic correlated failures and their effects on network reliability. In: Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), pp. 1–6 (2011)

    Google Scholar 

  34. Ruiz-Castro, J.E., Fernández-Villodre, G., Pérez-Ocón, R.: Discrete repairable systems with external and internal failures under phase-type distributions. IEEE Trans. Reliab. 58(1), 41–52 (2009)

    Article  Google Scholar 

  35. Sauer, C.H., Chandy, K.M.: Computer Systems Performance Modeling. Prentice Hall, Englewood Cliffs (1981)

    Google Scholar 

  36. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  37. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)

    Article  Google Scholar 

  38. Van Houdt, B., Lenin, R.B., Blondia, C.: Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age-dependent service times. Queueing Syst. 45(1), 59–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Peter Buchholz, Jan Kriege, Iryna Felko

About this chapter

Cite this chapter

Buchholz, P., Kriege, J., Felko, I. (2014). Introduction. In: Input Modeling with Phase-Type Distributions and Markov Models. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06674-5_1

Download citation

Publish with us

Policies and ethics