Skip to main content

Carbon Dioxide Separation, Capture, and Storage in Porous Materials

  • Chapter
  • First Online:
Neutron Applications in Materials for Energy

Abstract

Solid porous materials represent one of the most promising technologies for separating and storing gases of importance in the generation and use of energy. Understanding the fundamental interaction of guest molecules such as carbon dioxide in porous hosts is crucial for progressing materials towards industrial use in post and pre combustion carbon-capture processes, as well as in natural-gas sweetening. Neutron scattering has played a significant role already in providing an understanding of the working mechanisms of these materials, which are still in their infancy for such applications. This chapter gives examples of insights into the working mechanisms of porous solid adsorbents gained by neutron scattering, such as the nature of the interaction of carbon dioxide and other guest molecules with the host as well as the host response. The synthesis of many of these porous hosts affords significant molecular-level engineering of solid architectures and chemical functionalities that in turn control gas selectivity. When directed by the insights gained through neutron-scattering measurements, these materials are leading toward ideal gas separation and storage properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Neftel, H. Friedli, E. Moor, H. Lötscher, H. Oeschger, U. Siegenthaler, B. Stauffer, Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center. (Oak Ridge National Laboratory, US Department of Energy, 1994)

    Google Scholar 

  2. C.D. Keeling, T.P. Whorf, M. Wahlen, J. van der Plichtt, Nature 375, 666 (1995)

    Article  Google Scholar 

  3. B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, IPCC special report on Carbon Dioxide Capture and Storage (2005)

    Google Scholar 

  4. http://unfccc.int/2860.php. Accessed 4 Mar 2014

  5. http://www.usaid.gov/climate. Accessed 4 Mar 2014

  6. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev. 112, 724 (2011)

    Article  Google Scholar 

  7. D.M. D’Alessandro, B. Smit, J.R. Long, Angew. Chem. Int. Ed. 49, 6058 (2010)

    Article  Google Scholar 

  8. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Int. J. Greenh. Gas Control 2, 9 (2008)

    Article  Google Scholar 

  9. C.E. Powell, G.G. Qiao, J. Membr. Sci. 279, 1 (2006)

    Article  Google Scholar 

  10. P.D. Vaidya, E.Y. Kenig, Chem. Eng. Technol. 30, 1467 (2007)

    Article  Google Scholar 

  11. E.P.R. Institute, Program on technology innovation: post-combustion CO 2 capture technology development (Electric Power Res. Ins, Palo Alto, 2008)

    Google Scholar 

  12. P.H.M. Feron, C.A. Hendriks, Oil and gas science and technology—rev. IFP 60, 451 (2005)

    Google Scholar 

  13. L.I. Eide, D.W. Bailey, Oil and gas science and technology—rev. IFP 60, 475 (2005)

    Google Scholar 

  14. M.M. Abu-Khader, Energ. Source. Part A 28, 1261 (2006)

    Article  Google Scholar 

  15. Q. Yang, C. Zhong, J. Phys. Chem. B 110, 17776 (2006)

    Article  Google Scholar 

  16. R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J.A. Poston, Energ. Fuels 15, 279 (2001)

    Article  Google Scholar 

  17. X. Xu, C. Song, B.G. Miller, A.W. Scaroni, Fuel Process. Technol. 86, 1457 (2005)

    Article  Google Scholar 

  18. J.C. Hicks, J.H. Drese, D.J. Fauth, M.L. Gray, G. Qi, C.W. Jones, J. Am. Chem. Soc. 130, 2902 (2008)

    Article  Google Scholar 

  19. B. Moulton, M.J. Zaworotko, Chem. Rev. 101, 1629 (2001)

    Article  Google Scholar 

  20. C. Janiak, Dalton Trans. 14, 2781 (2003)

    Google Scholar 

  21. A. Demessence, D.M. D’Alessandro, M.L. Foo, J.R. Long, J. Am. Chem. Soc. 131, 8784 (2009)

    Article  Google Scholar 

  22. T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, J. Am. Chem. Soc. 134, 7056 (2012)

    Article  Google Scholar 

  23. E. Neofotistou, C.D. Malliakas, P.N. Trikalitis, Chem.-Eur. J. 15, 4523 (2009)

    Article  Google Scholar 

  24. D.N. Dybtsev, H. Chun, S.H. Yoon, D. Kim, K. Kim, J. Am. Chem. Soc. 126, 32 (2003)

    Article  Google Scholar 

  25. B. Chen, S. Ma, E.J. Hurtado, E.B. Lobkovsky, H.-C. Zhou, Inorg. Chem. 46, 8490 (2007)

    Article  Google Scholar 

  26. B. Chen, S. Ma, F. Zapata, F.R. Fronczek, E.B. Lobkovsky, H.-C. Zhou, Inorg. Chem. 46, 1233 (2007)

    Article  Google Scholar 

  27. P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk, G. FĂ©rey, Angew. Chem. Int. Ed. 45, 7751 (2006)

    Article  Google Scholar 

  28. C. Serre, S. Bourrelly, A. Vimont, N.A. Ramsahye, G. Maurin, P.L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, G. FĂ©rey, Adv. Mater. 19, 2246 (2007)

    Article  Google Scholar 

  29. P.D.C. Dietzel, R.E. Johnsen, H. Fjellvag, S. Bordiga, E. Groppo, S. Chavan, R. Blom, Chem. Commun. 41, 5125 (2008)

    Google Scholar 

  30. R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, P.G. Boyd, S. Alavi, T.K. Woo, Science 330, 650 (2010)

    Article  Google Scholar 

  31. M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown, J. Am. Chem. Soc. 134, 1970 (2012)

    Article  Google Scholar 

  32. H. Wu, J.M. Simmons, G. Srinivas, W. Zhou, T. Yildirim, J. Phys. Chem. Lett. 1, 1946 (2010)

    Article  Google Scholar 

  33. W.L. Queen, C.M. Brown, D.K. Britt, P. Zajdel, M.R. Hudson, O.M. Yaghi, J. Phys. Chem. C 115, 24915 (2011)

    Article  Google Scholar 

  34. T.A. Steriotis, K.L. Stefanopoulos, F.K. Katsaros, R. Glaser, A.C. Hannon, J.D.F. Ramsay, Phys. Rev. B 78, 115424 (2008)

    Google Scholar 

  35. K.L. Stefanopoulos, T.A. Steriotis, F.K. Katsaros, N.K. Kanellopoulos, A.C. Hannon, J.D.F. Ramsay, in 5th European Conference on Neutron Scattering, vol. 340. (Iop Publishing Ltd, Bristol, 2012)

    Google Scholar 

  36. T.A. Steriotis, K.L. Stefanopoulos, N.K. Kanellopoulos, A.C. Mitropoulos, A. Hoser, Colloid Surf. A-Physicochem. Eng. Asp. 241, 239 (2004)

    Article  Google Scholar 

  37. H. Wu, J.M. Simmons, G. Srinivas, W. Zhou, T. Yildirim, J. Phys. Chem. Lett. 1, 1946 (2010)

    Google Scholar 

  38. R.K. Motkuri, P.K. Thallapally, B.P. McGraii, S.B. Ghorishi, Cryst. Eng. Comm. 12, 4003 (2010)

    Article  Google Scholar 

  39. S.H. Ogilvie, S.G. Duyker, P.D. Southon, V.K. Peterson, C.J. Kepert, Chem. Commun. 49, 9404 (2013)

    Article  Google Scholar 

  40. T. Ikeda, O. Yamamuro, T. Matsuo, K. Mori, S. Torii, T. Kamiyama, F. Izumi, S. Ikeda, S. Mae, J. Phys. Chem. Solids 60, 1527 (1999)

    Article  Google Scholar 

  41. N. Igawa, T. Taguchi, A. Hoshikawa, H. Fukazawa, H. Yamauchi, W. Utsumi, Y. Ishii, J. Phys. Chem. Solids 71, 899 (2010)

    Article  Google Scholar 

  42. A. Falenty, G. Genov, T.C. Hansen, W.F. Kuhs, A.N. Salamatin, J. Phys. Chem. C 115, 4022 (2011)

    Article  Google Scholar 

  43. A.J. Ramirez-Cuesta, Comput. Phys. Commun. 157, 226 (2004)

    Article  Google Scholar 

  44. S. Yang, J. Sun, A.J. Ramirez-Cuesta, S.K. Callear, W.I.F. David, D.P. Anderson, R. Newby, A.J. Blake, J.E. Parker, C.C. Tang, M. Schröder, Nat. Chem. 4, 887 (2012)

    Article  Google Scholar 

  45. H. Jobic, D.N. Theodorou, Microporous Mesoporous Mat. 102, 21 (2007)

    Article  Google Scholar 

  46. H. Jobic, K. Makzodimitris, G.K. Papadopoulos, H. Schober, D.N. Theodorou, in Proceedings of the 14th International Zeolite Conference, Cape Town, 2004

    Google Scholar 

  47. D. Plant, H. Jobic, P. Llewellyn, G. Maurin, Eur. Phys. J. -Spec. Top. 141, 127 (2007)

    Article  Google Scholar 

  48. F. Salles, H. Jobic, T. Devic, P.L. Llewellyn, C. Serre, G. Ferey, G. Maurin. ACS Nano 4, 143 (2010)

    Google Scholar 

  49. F. Salles, H. Jobic, A. Ghoufi, P.L. Llewellyn, C. Serre, S. Bourrelly, G. Ferey, G. Maurin. Angew. Chem. Int. Ed. 48, 8335 (2009)

    Article  Google Scholar 

  50. A.V. Neimark, F.-X.Coudert, C. Triguero, A. Boutin, A.H. Fuchs, I. Beurroies, R. Denoyel, Langmuir, 27, 4734 (2011)

    Google Scholar 

  51. Y.B. Melnichenko, A.P. Radlinski, M. Mastalerz, G. Cheng, J. Rupp, Int. J. Coal Geol. 77, 69 (2009)

    Article  Google Scholar 

  52. A.P. Radlinski, T.L. Busbridge, E.M. Gray, T.P. Blach, G. Cheng, Y.B. Melnichenko, D.J. Cookson, M. Mastaterz, J. Esterle, Langmuir, 25, 2385 (2009)

    Google Scholar 

  53. M. Mirzaeian, P.J. Hall, H.F. Jirandehi, J. Mater. Sci. 45, 5271 (2010)

    Article  Google Scholar 

  54. D.R. Cole, A.A. Chialvo, G. Rother, L. Vlcek, P.T. Cummings, Philos. Mag. 90, 2339 (2010)

    Article  Google Scholar 

  55. P.D.C. Dietzel, R.E. Johnsen, R. Blom H. FjellvĂ¥g, Chem.-Eur. J. 14, 2389 (2008)

    Google Scholar 

  56. E.D. Bloch, D. Britt, C. Lee, C.J. Doonan, F.J. Uribe-Romo, H. Furukawa, J.R. Long, O.M. Yaghi, J. Am. Chem. Soc. 132, 14382 (2010)

    Article  Google Scholar 

  57. J. An, S.J. Geib, N.L. Rosi, J. Am. Chem. Soc. 132, 38 (2009)

    Article  Google Scholar 

  58. M.E. Welk, F. Bonhomme, T.M. Nenoff, Prepr. Pap. -Am. Chem. Soc. Div. Fuel Chem., 49, 245 (2004)

    Google Scholar 

  59. H. Jobic, K. Makrodimitris, G.K. Papadopoulos, H. Schober, D.N. Theodorou, in Recent Advances in the Science and Technology of Zeolites and Related Materials, Pts a—C, eds. by E. VanSteen, M. Claeys and L. H. Callanan, vol. 154. (Elsevier Science Bv, Amsterdam, 2004) pp. 2056

    Google Scholar 

  60. G.K. Papadopoulos, H. Jobic, D.N. Theodorou, J. Phys. Chem. B 108, 12748 (2004)

    Article  Google Scholar 

  61. J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc.Rev. 38, 1477 (2009)

    Article  Google Scholar 

  62. A.J. Ramirez-Cuesta, M.O. Jones, W.I.F. David, Mater. Today 12, 54 (2009)

    Article  Google Scholar 

  63. M. Hirscher (ed.), Handbook of Hydrogen Storage, New Materials for Future Energy Storage (WILEY-VCH, Weinheim, 2010)

    Google Scholar 

  64. P. Earis, ed., Hydrogen Storage Materials, (RSC Publishing, 2011)

    Google Scholar 

  65. T. Yildirim, M.R. Hartman, Phys. Rev. Lett., 95 (2005)

    Google Scholar 

  66. F.M. Mulder, T.J. Dingemans, H.G. Schimmel, A.J. Ramirez-Cuesta, G.J. Kearley, Chem. Phys. 351, 72 (2008)

    Article  Google Scholar 

  67. V.K. Peterson, C.M. Brown, Y. Liu, C.J. Kepert, J. Phys. Chem. C 115, 8851 (2011)

    Article  Google Scholar 

  68. V.K. Peterson, Y. Liu, C.M. Brown, C.J. Kepert, J. Am. Chem. Soc. 128, 15578 (2006)

    Article  Google Scholar 

  69. V.K. Peterson, Y. Liu, C.M. Brown, C.J. Kepert, Mater. Res. Soc. 561–565, 1601 (2007)

    Google Scholar 

  70. C.M. Brown, Y. Liu, T. Yildirim, V.K. Peterson, C.J. Kepert, Nanotechnology, 20 (2009)

    Google Scholar 

  71. Y. Liu, C.M. Brown, D.A. Neumann, V.K. Peterson, C.J. Kepert, J. Alloy, Compd 446, 385 (2007)

    Article  Google Scholar 

  72. W.L. Queen, E.D. Bloch, C.M. Brown, M.R. Hudson, J.A. Mason, L.J. Murray, A.J. Ramirez-Cuesta, V.K. Peterson, J.R. Long, Dalton T. 41, 4180 (2012)

    Article  Google Scholar 

  73. Y. Liu, H. Kabbour, C.M. Brown, D.A. Neumann, C.C. Ahn, Langmuir 24, 4772 (2008)

    Article  Google Scholar 

  74. X. Lin, I. Telepeni, A.J. Blake, A. Dailly, C.M. Brown, J.M. Simmons, M. Zoppi, G.S. Walker, K.M. Thomas, T.J. Mays, P. Hubberstey, N.R. Champness, M. Schroder, J. Am. Chem. Soc. 131, 2159 (2009)

    Article  Google Scholar 

  75. H. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc. 129, 5314 (2007)

    Article  Google Scholar 

  76. M.R. Hartman, V.K. Peterson, Y. Liu, S.S. Kaye, J.R. Long, Chem. Mater. 18, 3221 (2006)

    Article  Google Scholar 

  77. L.J. Murray, M. Dinca, J. Yano, S. Chavan, S. Bordiga, C.M. Brown, J.R. Long, J. Am. Chem. Soc. 132, 7856 (2010)

    Article  Google Scholar 

  78. E.D. Bloch, L.J. Murray, W.L. Queen, S. Chavan, S.N. Maximoff, J.P. Bigi, R. Krishna, V.K. Peterson, F. Grandjean, G.J. Long, B. Smit, S. Bordiga, C.M. Brown, J.R. Long, J. Am. Chem. Soc. 133, 14814 (2011)

    Article  Google Scholar 

  79. H.K. Jeong, W. Krych, H. Ramanan, S. Nair, E. Marand, M. Tsapatsis, Chem. Mater. 16, 3838 (2004)

    Article  Google Scholar 

  80. H. Lin, E. Van Wagner, R. Raharjo, B.D. Freeman, I. Roman, Adv. Mater. 18, 39 (2006)

    Article  Google Scholar 

  81. P.D.C. Dietzel, V. Besikiotis, R. Blom, J. Mater. Chem. 19, 7362 (2009)

    Article  Google Scholar 

  82. M. Tagliabue, D. Farrusseng, S. Valencia, S. Aguado, U. Ravon, C. Rizzo, A. Corma, C. Mirodatos, Chem. Eng. J. 155, 553 (2009)

    Article  Google Scholar 

  83. H. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc. 131, 4995 (2009)

    Article  Google Scholar 

  84. H. Wu, W. Zhou, T. Yildirim, J. Phys. Chem. C 113, 3029 (2009)

    Article  Google Scholar 

  85. H. Wu, J.M. Simmons, Y. Liu, C.M. Brown, X.S. Wang, S. Ma, V.K. Peterson, P.D. Southon, C.J. Kepert, H.C. Zhou, T. Yildirim, W. Zhou, Chem. -Eur. J. 16, 5205 (2010)

    Article  Google Scholar 

  86. N. Rosenbach, H. Jobic, A. Ghoufi, F. Salles, G. Maurin, S. Bourrelly, P.L. Llewellyn, T. Devic, C. Serre, G. Ferey, Angew. Chem. Int. Ed. 47, 6611 (2008)

    Article  Google Scholar 

  87. Q.Y. Yang, H. Jobic, F. Salles, D. Kolokolov, V. Guillerm, C. Serre, G. Maurin, Chem. -Eur. J. 17, 8882 (2011)

    Article  Google Scholar 

  88. Q.Y. Yang, A.D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, G. Maurin, J. Phys. Chem. C 115, 13768 (2011)

    Article  Google Scholar 

  89. I. Deroche, G. Maurin, B.J. Borah, S. Yashonath, H. Jobic, J. Phys. Chem. C 114, 5027 (2010)

    Article  Google Scholar 

  90. T.A. Darwish, A.R.G. Smith, I.R. Gentle, P.L. Burn, E. Luks, G. Moraes, M. Gillon, P.J. Holden, M. James, Tetrahedron Lett. 53, 931 (2012)

    Article  Google Scholar 

  91. F.M. Mulder, B. Assfour, J. Huot, T.J. Dingemans, M. Wagemaker, A.J. Ramirez-Cuesta, J. Phys. Chem. C 114, 10648 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deanna M. D’Alessandro or Vanessa K. Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, A., D’Alessandro, D.M., Peterson, V.K. (2015). Carbon Dioxide Separation, Capture, and Storage in Porous Materials. In: Kearley, G., Peterson, V. (eds) Neutron Applications in Materials for Energy. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-06656-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06656-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06655-4

  • Online ISBN: 978-3-319-06656-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics