Skip to main content

Coherent Risk Measures Under Dominated Variation

  • Chapter
  • First Online:
Modern Problems in Insurance Mathematics

Part of the book series: EAA Series ((EAAS))

  • 1786 Accesses

Abstract

We study the relation between the properties of the coherent risk measures and of the heavy-tailed distributions from radial subsets of random variables. As a result, a new risk measure is introduced for this type of random variable. Under the assumptions of the Lundberg and renewal risk models, the solvency capital in the class of distributions with dominatedly varying tails is calculated. Further, the existence and uniqueness of the solution in the optimisation problem, associated to the minimisation of the risk over a set of financial positions, is investigated. The optimisation results hold on the \(L^{1+\varepsilon }\)-spaces, for any \(\varepsilon \ge 0\), but the uniqueness collapses on \(L^{1}\), the canonical space for the law-invariant coherent risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces. Academic Press, New York (1978)

    Google Scholar 

  2. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 2nd edn. Springer, Berlin, Heidelberg, New York, Tokyo (1999)

    Google Scholar 

  3. Asmussen, S.: Applied Probability and Queues. Wiley, Chichester (1987)

    MATH  Google Scholar 

  4. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. D. Riedel Publishing Company, Kluwer Academic Publishers Group, Dordrecht (1986)

    Google Scholar 

  5. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  6. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  7. Cai, J., Tang, Q.: On Max-sum Equivalence and Convolution Closure of Heavy-tailed Distributions and their Applications. J. Appl. Probab. 41, 117–130 (2004)

    Google Scholar 

  8. Delbaen, F.: Coherent Risk Measures on General Probability Spaces. In: Advances in Finance and Stochastics: Essays in Honor of Dieter Sondermann, pp. 1–38. Springer, Berlin, New York (2002)

    Google Scholar 

  9. Dhaene, G., Goovaerts, M.J., Kaas, R., Tang, Q., Vanduffel, S., Vyncke, D.: Solvency Capital, Risk Measures and Comonotonicity: A Review. Research Report OR0416, Department of Applied Economics, Catholic University of Leuven (2003)

    Google Scholar 

  10. Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and Infinite Divisibility. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 335–347 (1979)

    Google Scholar 

  11. Embrechts, P., Goldie, C.M.: On Closure and Factorization Properties of Subexponential and Related Distributions. J. Aust. Math. Soc. 29, 243–256 (1980)

    Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II. Wiley, New York (1971)

    MATH  Google Scholar 

  13. Filipović, D., Svindland, G.: The Canonical Space for Law-invariant Convex Risk Measures is \(L^1\). Math. Finance 22, 585–589 (2012)

    Google Scholar 

  14. Jameson, G.: Ordered Linear Spaces, Lecture Notes in Mathematics 141. Springer, Berlin, Heidelberg, New York (1970)

    Google Scholar 

  15. Kaina, M., Rüschendorf, L.: On Convex Risk Measures on \(L^{p}\)-spaces. Math. Methods Oper. Res. 69, 475–495 (2009)

    Google Scholar 

  16. Konstantinides, D.G.: Extreme Subexponentiality in Ruin Probabilities. Commun. Stat. Theory Methods 40, 2907–2918 (2011)

    Google Scholar 

  17. Konstantinides, D.G., Kountzakis, C.: Risk Measures in Ordered Normed Linear Spaces with Non-empty Cone-interior. Insur. Math. Econ. 48, 111–122 (2011)

    Google Scholar 

  18. Konstantinides, D.G., Kountzakis, C.: The Restricted Convex Risk Measures in Actuarial Solvency. Decisions Econ. Finance (2014). doi:10.1007/s10203-012-0134-6

  19. Megginson, R.: An Introduction to Banach Spaces. Springer, New York (1998)

    Book  Google Scholar 

  20. Peng, D., Yu, J., Xiu, N.: Generic uniqueness theorems with some applications. J. Glob. Optim. 56, 713–725 (2013)

    Google Scholar 

  21. Skorohod, A.V.: Limit Theorems for Stochastic Processes. Theory Probab. Appl. 1, 261–290 (1956)

    Google Scholar 

  22. Tang, Q., Tsitsiashvili, G.: Precise estimations for the ruin probability in finite-horizon in a discrete-time model with heavy-tail insurance and financial risks. Stoch. Process. Appl. 108, 299–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios G. Konstantinides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Konstantinides, D.G., Kountzakis, C.E. (2014). Coherent Risk Measures Under Dominated Variation. In: Silvestrov, D., Martin-Löf, A. (eds) Modern Problems in Insurance Mathematics. EAA Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06653-0_8

Download citation

Publish with us

Policies and ethics