Skip to main content

How the Aging Process Affects Our Immune System: Mechanisms, Consequences, and Perspectives for Intervention

  • Chapter
  • First Online:
Health and Cognition in Old Age

Part of the book series: International Perspectives on Aging ((Int. Perspect. Aging,volume 10))

  • 1450 Accesses

Abstract

The aging of the immune system involves a complex set of changes that is collectively referred to as immune senescence. Clinically, immune senescence has been associated with decreased protection following vaccinations, increased morbidity and mortality from infectious diseases, increased risk of cancer, and increased incidence of autoimmune and inflammatory diseases. Although our understanding of the mechanisms that drive immune senescence has improved during the past decades, we are still far away from therapies that would be able to delay or even prevent the development of immune senescence in humans. This book chapter will illustrate our current knowledge of how the aging process affects our immune system, which key factors are responsible for the aging of immune cells, how environmental factors such as certain life-long viral infections may affect immunological aging, and what challenges the scientific community has to overcome to successfully implement strategies that delay or prevent immunosenescence and thereby increase the human health span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius E, Lacy KE, Vukmanovic-Stejic M, Jagger AL, Papageorgiou AP, Hall S, Reed JR, Curnow SJ, Fuentes-Duculan J, Buckley CD, Salmon M, Taams LS, Krueger J, Greenwood J, Klein N, Rustin MH, Akbar AN (2009) Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. J Exp Med 206(9):1929–1940. doi:10.1084/jem.20090896

    Article  Google Scholar 

  • Almanzar G, Schwaiger S, Jenewein B, Keller M, Herndler-Brandstetter D, Wurzner R, Schonitzer D, Grubeck-Loebenstein B (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79(6):3675–3683

    Article  Google Scholar 

  • Alves NL, van Leeuwen EM, Remmerswaal EB, Vrisekoop N, Tesselaar K, Roosnek E, ten Berge IJ, van Lier RA (2007) A new subset of human naive CD8+ T cells defined by low expression of IL-7R alpha. J Immunol 179(1):221–228

    Article  Google Scholar 

  • Aspinall R, Mitchell W (2008) Reversal of age-associated thymic atrophy: treatments, delivery, and side effects. Exp Gerontol 43(7):700–705

    Article  Google Scholar 

  • Aspinall R, Pido-Lopez J, Imami N, Henson SM, Ngom PT, Morre M, Niphuis H, Remarque E, Rosenwirth B, Heeney JL (2007) Old rhesus macaques treated with interleukin-7 show increased TREC levels and respond well to influenza vaccination. Rejuvenation Res 10(1):5–17

    Article  Google Scholar 

  • Aydar Y, Balogh P, Tew JG, Szakal AK (2002) Age-related depression of FDC accessory functions and CD21 ligand-mediated repair of co-stimulation. Eur J Immunol 32(10):2817–2826

    Article  Google Scholar 

  • Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE, Maverakis E, Wilkins DE, Alderson KL, Hsiao HH, Weiss JM, Monjazeb AM, Hesdorffer C, Ferrucci L, Longo DL, Blazar BR, Wiltrout RH, Redelman D, Taub DD, Murphy WJ (2013) Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. J Exp Med 210(11):2223–2237. doi:10.1084/jem.20131219

    Article  Google Scholar 

  • Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7):2711–2720

    Article  Google Scholar 

  • Brunner S, Herndler-Brandstetter D, Arnold CR, Wiegers GJ, Villunger A, Hackl M, Grillari J, Moreno-Villanueva M, Burkle A, Grubeck-Loebenstein B (2012) Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell 11(4):579–587. doi:10.1111/j.1474-9726.2012.00819.x

    Article  Google Scholar 

  • Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB (2009) Vaccination in the elderly: an immunological perspective. Trends Immunol 30(7):351–359

    Article  Google Scholar 

  • Chiu WK, Fann M, Weng NP (2006) Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J Immunol 177(11):7802–7810

    Article  Google Scholar 

  • Cicin-Sain L, Sylwester AW, Hagen SI, Siess DC, Currier N, Legasse AW, Fischer MB, Koudelka CW, Axthelm MK, Nikolich-Zugich J, Picker LJ (2011) Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol 187(4):1722–1732. doi:10.4049/jimmunol.1100560

    Article  Google Scholar 

  • Colonna-Romano G, Bulati M, Aquino A, Scialabba G, Candore G, Lio D, Motta M, Malaguarnera M, Caruso C (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev 124(4):389–393

    Article  Google Scholar 

  • Di Rosa F, Pabst R (2005) The bone marrow: a nest for migratory memory T cells. Trends Immunol 26(7):360–366

    Article  Google Scholar 

  • Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, Smith RG, Taub DD (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117(10):2778–2790

    Article  Google Scholar 

  • Effros RB, Cai Z, Linton PJ (2003) CD8 T cells and aging. Crit Rev Immunol 23(1–2):45–64

    Article  Google Scholar 

  • Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95(9):2860–2868

    Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448(7155):767–774. doi:10.1038/nature05985

    Article  Google Scholar 

  • Florian MC, Nattamai KJ, Dorr K, Marka G, Uberle B, Vas V, Eckl C, Andra I, Schiemann M, Oostendorp RA, Scharffetter-Kochanek K, Kestler HA, Zheng Y, Geiger H (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396. doi:10.1038/nature12631

    Article  Google Scholar 

  • Gavazzi G, Krause KH (2002) Ageing and infection. Lancet Infect Dis 2(11):659–666

    Article  Google Scholar 

  • Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24(8):1159–1169. doi:10.1016/j.vaccine.2005.08.105

    Article  Google Scholar 

  • Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14(5):428–436. doi:10.1038/ni.2588

    Article  Google Scholar 

  • Goronzy JJ, Li G, Yang Z, Weyand CM (2013) The janus head of T cell aging—autoimmunity and immunodeficiency. Front Immunol 4:131. doi:10.3389/fimmu.2013.00131

    Article  Google Scholar 

  • Grubeck-Loebenstein B, Berger P, Saurwein-Teissl M, Zisterer K, Wick G (1998) No immunity for the elderly. Nat Med 4(8):870

    Article  Google Scholar 

  • Haynes L, Swain SL (2012) Aged-related shifts in T cell homeostasis lead to intrinsic T cell defects. Semin Immunol 24(5):350–355. doi:10.1016/j.smim.2012.04.001

    Article  Google Scholar 

  • Haynes L, Linton PJ, Eaton SM, Tonkonogy SL, Swain SL (1999) Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med 190(7):1013–1024

    Article  Google Scholar 

  • Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP (2000) The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 18:529–560

    Article  Google Scholar 

  • Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2003) CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A 100(25):15053–15058. doi:10.1073/pnas.2433717100

    Article  Google Scholar 

  • Hazeldine J, Hampson P, Lord JM (2012) Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11(5):751–759. doi:10.1111/j.1474-9726.2012.00839.x

    Article  Google Scholar 

  • Herndler-Brandstetter D, Schwaiger S, Veel E, Fehrer C, Cioca DP, Almanzar G, Keller M, Pfister G, Parson W, Wurzner R, Schonitzer D, Henson SM, Aspinall R, Lepperdinger G, Grubeck-Loebenstein B (2005) CD25-expressing CD8+ T cells are potent memory cells in old age. J Immunol 175(3):1566–1574

    Article  Google Scholar 

  • Herndler-Brandstetter D, Cioca DP, Grubeck-Loebenstein B (2006) Immunizations in the elderly: do they live up to their promise? Wien Med Wochenschr 156(5–6):130–141. doi:10.1007/s10354-006-0267-8

    Article  Google Scholar 

  • Herndler-Brandstetter D, Veel E, Laschober GT, Pfister G, Brunner S, Walcher S, Parson W, Lepperdinger G, Grubeck-Loebenstein B (2008) Non-regulatory CD8+CD45RO+CD25+ T-lymphocytes may compensate for the loss of antigen-inexperienced CD8+CD45RA+T-cells in old age. Biol Chem 389(5):561–568

    Article  Google Scholar 

  • Herndler-Brandstetter D, Weinberger B, Pfister G, Weiskopf D, Grubeck-Loebenstein B (2011) The aging of the adaptive immune system. Curr Immunol Rev 7:94–103

    Article  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K, Tzankov A, Jenewein B, Brunauer R, Laschober GT, Parson W, Kloss F, Gassner R, Lepperdinger G, Grubeck-Loebenstein B (2012) The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 91(2):197–205. doi:10.1189/jlb.0611299

    Article  Google Scholar 

  • Holland AM, van den Brink MR (2009) Rejuvenation of the aging T cell compartment. Curr Opin Immunol 21(4):454–459

    Article  Google Scholar 

  • Iancu EM, Corthesy P, Baumgaertner P, Devevre E, Voelter V, Romero P, Speiser DE, Rufer N (2009) Clonotype selection and composition of human CD8 T cells specific for persistent herpes viruses varies with differentiation but is stable over time. J Immunol 183(1):319–331

    Article  Google Scholar 

  • Johnson SA, Cambier JC (2004) Ageing, autoimmunity and arthritis: senescence of the B cell compartment—implications for humoral immunity. Arthritis Res Ther 6(4):131–139. doi:10.1186/ar1180

    Article  Google Scholar 

  • Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R (2002) Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol 32(6):1567–1573. doi:10.1002/1521-4141(200206)32:6<1567::AID-IMMU1567>3.0.CO;2-P

    Article  Google Scholar 

  • Kovaiou RD, Weiskirchner I, Keller M, Pfister G, Cioca DP, Grubeck-Loebenstein B (2005) Age-related differences in phenotype and function of CD4+ T cells are due to a phenotypic shift from naive to memory effector CD4+ T cells. Int Immunol 17(10):1359–1366. doi:10.1093/intimm/dxh314

    Article  Google Scholar 

  • Kovaiou RD, Herndler-Brandstetter D, Grubeck-Loebenstein B (2007) Age-related changes in immunity: implications for vaccination in the elderly. Expert Rev Mol Med 9(3):1–17

    Article  Google Scholar 

  • Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-Loebenstein B (2005) Age-related loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 114(1):37–43. doi:10.1111/j.1365-2567.2004.02006.x

    Article  Google Scholar 

  • LeMaoult J, Szabo P, Weksler ME (1997) Effect of age on humoral immunity, selection of the B-cell repertoire and B-cell development. Immunol Rev 160:115–126

    Article  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139. doi:10.1038/ni1033

    Article  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30(7):366–373

    Article  Google Scholar 

  • Mattila PS, Tarkkanen J (1997) Age-associated changes in the cellular composition of the human adenoid. Scand J Immunol 45(4):423–427

    Article  Google Scholar 

  • McElhaney JE (2009) Prevention of infectious diseases in older adults through immunization: the challenge of the senescent immune response. Expert Rev Vaccines 8(5):593–606

    Article  Google Scholar 

  • Messaoudi I, Warner J, Fischer M, Park B, Hill B, Mattison J, Lane MA, Roth GS, Ingram DK, Picker LJ, Douek DC, Mori M, Nikolich-Zugich J (2006) Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 103(51): 19448–19453

    Article  Google Scholar 

  • Murali-Krishna K, Ahmed R (2000) Cutting edge: naive T cells masquerading as memory cells. J Immunol 165(4):1733–1737

    Article  Google Scholar 

  • Muss HB (2009) Cancer in the elderly: a societal perspective from the United States. Clin Oncol (R Coll Radiol) 21(2):92–98. doi:10.1016/j.clon.2008.11.008

    Article  Google Scholar 

  • Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121(1–3):187–201

    Google Scholar 

  • Oxman MN, Levin MJ, Johnson GR, Schmader KE, Straus SE, Gelb LD, Arbeit RD, Simberkoff MS, Gershon AA, Davis LE, Weinberg A, Boardman KD, Williams HM, Zhang JH, Peduzzi PN, Beisel CE, Morrison VA, Guatelli JC, Brooks PA, Kauffman CA, Pachucki CT, Neuzil KM, Betts RF, Wright PF, Griffin MR, Brunell P, Soto NE, Marques AR, Keay SK, Goodman RP, Cotton DJ, Gnann JW Jr, Loutit J, Holodniy M, Keitel WA, Crawford GE, Yeh SS, Lobo Z, Toney JF, Greenberg RN, Keller PM, Harbecke R, Hayward AR, Irwin MR, Kyriakides TC, Chan CY, Chan IS, Wang WW, Annunziato PW, Silber JL (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 352(22):2271–2284. doi:10.1056/NEJMoa051016

    Article  Google Scholar 

  • Palmer DB (2013) The effect of age on thymic function. Front Immunol 4:316. doi:10.3389/fimmu.2013.00316

    Article  Google Scholar 

  • Pfister G, Weiskopf D, Lazuardi L, Kovaiou RD, Cioca DP, Keller M, Lorbeg B, Parson W, Grubeck-Loebenstein B (2006) Naive T cells in the elderly: are they still there? Ann N Y Acad Sci 1067:152–157. doi:10.1196/annals.1354.018

    Article  Google Scholar 

  • Rafailidis PI, Mourtzoukou EG, Varbobitis IC, Falagas ME (2008) Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J 5:47. doi:10.1186/1743-422X-5-47

    Article  Google Scholar 

  • Remmerswaal EB, Havenith SH, Idu MM, van Leeuwen EM, van Donselaar KA, Ten Brinke A, van der Bom-Baylon N, Bemelman FJ, van Lier RA, Ten Berge IJ (2012) Human virus-specific effector-type T cells accumulate in blood but not in lymph nodes. Blood 119(7):1702–1712. doi:10.1182/blood-2011-09-381574

    Article  Google Scholar 

  • Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG (2013) Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 31:635–674. doi:10.1146/annurev-immunol-032712-095921

    Article  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199. doi:10.1073/pnas.0503280102

    Article  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–729. doi:10.1038/nature05862

    Article  Google Scholar 

  • Rudd BD, Venturi V, Li G, Samadder P, Ertelt JM, Way SS, Davenport MP, Nikolich-Zugich J (2011) Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor: pMHC interactions. Proc Natl Acad Sci U S A 108(33):13694–13699. doi:10.1073/pnas.1107594108

    Article  Google Scholar 

  • Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S, Sakaguchi S (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426(6965):454–460. doi:10.1038/nature02119

    Article  Google Scholar 

  • Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197. doi:10.1016/j.immuni.2012.09.020

    Article  Google Scholar 

  • Sauce D, Appay V (2011) Altered thymic activity in early life: how does it affect the immune system in young adults? Curr Opin Immunol 23(4):543–548. doi:10.1016/j.coi.2011.05.001

    Article  Google Scholar 

  • Saurwein-Teissl M, Lung TL, Marx F, Gschosser C, Asch E, Blasko I, Parson W, Bock G, Schonitzer D, Trannoy E, Grubeck-Loebenstein B (2002) Lack of antibody production following immunization in old age: association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168(11):5893–5899

    Article  Google Scholar 

  • Schwaiger S, Wolf AM, Robatscher P, Jenewein B, Grubeck-Loebenstein B (2003) IL-4-producing CD8+ T cells with a CD62L++(bright) phenotype accumulate in a subgroup of older adults and are associated with the maintenance of intact humoral immunity in old age. J Immunol 170(1):613–619

    Article  Google Scholar 

  • Shahaf GL, Hazanov H, Averbuch D, Amu S, Ademokun A, Wu Y-C, Dunn-Walters D, Chiodi F, Mehr R (2014) Understanding the mechanisms of immune system aging: immune system cell development and antibody repertoires. In: Leist AK, Kulmala J, Nyqvist F (eds) Health and cognition in old age. Springer, New York

    Google Scholar 

  • Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887. doi:10.1038/nri3547

    Article  Google Scholar 

  • Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22(5): 563–575

    Article  Google Scholar 

  • Surani MA, McLaren A (2006) Stem cells: a new route to rejuvenation. Nature 443(7109): 284–285

    Article  Google Scholar 

  • Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105(2):117–125

    Article  Google Scholar 

  • Weinberger B, Lazuardi L, Weiskirchner I, Keller M, Neuner C, Fischer KH, Neuman B, Wurzner R, Grubeck-Loebenstein B (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8+ and CD4+ T-cell subsets in the elderly. Hum Immunol 68(2):86–90. doi:10.1016/j.humimm.2006.10.019

    Article  Google Scholar 

  • Weinberger B, Herndler-Brandstetter D, Schwanninger A, Weiskopf D, Grubeck-Loebenstein B (2008) Biology of immune responses to vaccines in elderly persons. Clin Infect Dis 46(7):1078–1084. doi:10.1086/529197

    Article  Google Scholar 

  • Weinberger B, Welzl K, Herndler-Brandstetter D, Parson W, Grubeck-Loebenstein B (2009) CD28(-)CD8(+) T cells do not contain unique clonotypes and are therefore dispensable. Immunol Lett 127(1):27–32

    Article  Google Scholar 

  • Weksler ME, Szabo P (2000) The effect of age on the B-cell repertoire. J Clin Immunol 20(4): 240–249

    Article  Google Scholar 

  • Weyand CM, Fujii H, Shao L, Goronzy JJ (2009) Rejuvenating the immune system in rheumatoid arthritis. Nat Rev Rheumatol 5(10):583–588. doi:10.1038/nrrheum.2009.180

    Article  Google Scholar 

  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 205(3):711–723. doi:10.1084/jem.20071140

    Article  Google Scholar 

  • Yang H, Youm YH, Dixit VD (2009a) Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 183(5):3040–3052

    Article  Google Scholar 

  • Yang H, Youm YH, Vandanmagsar B, Rood J, Kumar KG, Butler AA, Dixit VD (2009b) Obesity accelerates thymic aging. Blood 114(18):3803–3812

    Article  Google Scholar 

  • Zanni F, Vescovini R, Biasini C, Fagnoni F, Zanlari L, Telera A, Di Pede P, Passeri G, Pedrazzoni M, Passeri M, Franceschi C, Sansoni P (2003) Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8+ T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp Gerontol 38(9):981–987

    Article  Google Scholar 

Download references

Acknowledgment 

Dietmar Herndler-Brandstetter is an Erwin Schrodinger Fellow (funded by the Austrian Science Fund, J3220-B19, 2012–2013) and a previous FLARE Fellow (funded by the Austrian Federal Ministry of Science and Research, 2008–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Herndler-Brandstetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herndler-Brandstetter, D. (2014). How the Aging Process Affects Our Immune System: Mechanisms, Consequences, and Perspectives for Intervention. In: Leist, A., Kulmala, J., Nyqvist, F. (eds) Health and Cognition in Old Age. International Perspectives on Aging, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06650-9_5

Download citation

Publish with us

Policies and ethics