Skip to main content

Vascular Aging: Revealing the Role and Clinical Perspectives of the Urokinase System

  • Chapter
  • First Online:
Health and Cognition in Old Age

Part of the book series: International Perspectives on Aging ((Int. Perspect. Aging,volume 10))

  • 1443 Accesses

Abstract

Cardiovascular diseases (CVD) are the most common cause of death among the elderly population in Western countries. Despite progress in managing some of the established risk factors like hypertension and hypercholesterolemia, the incidence of CVD is predicted to increase as the population ages. The aging process itself is associated with morphological and functional changes in the vasculature. Moreover, age-related changes render the cardiovascular system susceptible to damaging actions of risk factors and diseases. Vascular smooth muscle cells (VSMCs) are intrinsically involved in age-associated changes of the vasculature. With age, the VSMC phenotype shifts towards a pathophysiological synthetic phenotype characterized by migration, proliferation, release of inflammatory cytokines, and augmented extracellular matrix deposition. The molecular mechanisms underlying age-associated VSMC phenotypic changes remain unclear. Recent large-scale population studies showed a close correlation between the urokinase/urokinase receptor system and CVD, inflammation, aging, and mortality. In our research, we have identified a new link between the urokinase system and arterial wall changes during vascular remodeling and initiation/progression of atherosclerosis. The urokinase system exerts its function at different levels. Systemically, it modulates oxidative stress via regulation of paraoxonase 1 production by the liver. Locally in the blood vessel wall, the urokinase system modulates VSMCs towards the synthetic phenotype via proteasomal degradation of the transcription coactivator, myocardin. Furthermore, the urokinase system interferes with VSMC senescence that influences the outcome of vascular remodeling and the fate of atherosclerotic plaques. The variety of functions exerted by the urokinase system in the vascular wall makes it an attractive therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni S, Aviram M, Fuhrman B (2013) Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis 228(2):353–361

    Article  Google Scholar 

  • Antoniades C, Antonopoulos AS, Bendall JK, Channon KM (2009) Targeting redox signaling in the vascular wall: from basic science to clinical practice. Curr Pharm Des 15(3):329–342

    Article  Google Scholar 

  • Asuthkar S, Gondi C, Nalla A, Velpula K, Gorantla B, Rao J (2012) Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/a-catenin signaling is enhanced in irradiated medulloblastoma cells. J Biol Chem 287(24):20576–20589

    Article  Google Scholar 

  • Binder BR, Mihaly J, Prager GW (2007) uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist’s view. Thromb Haemost 97(3):336–342

    Google Scholar 

  • Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3(12):932–943

    Article  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  Google Scholar 

  • Chen J, Kitchen CM, Streb JW, Miano JM (2002) Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 34(10):1345–1356

    Article  Google Scholar 

  • Cole JE, Georgiou E, Monaco C (2010) The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm 2010:393946

    Article  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  Google Scholar 

  • Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31(11):2370–2377

    Article  Google Scholar 

  • Dumler I, Weis A, Mayboroda OA, Maasch C, Jerke U, Haller H, Gulba DC (1998) The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells. J Biol Chem 273(1):315–321

    Article  Google Scholar 

  • El Assar M, Angulo J, Vallejo S, Peiro C, Sanchez-Ferrer CF, Rodriguez-Manas L (2012) Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 3:132

    Article  Google Scholar 

  • Ellam TJ, Chico TJ (2012) Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis 220(2):310–318

    Article  Google Scholar 

  • Fuhrman B, Partoush A, Volkova N, Aviram M (2008) Ox-LDL induces monocyte-to-macrophage differentiation in vivo: Possible role for the macrophage colony stimulating factor receptor (M-CSF-R). Atherosclerosis 196(2):598–607

    Article  Google Scholar 

  • Gomez D, Owens GK (2012) Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res 95(2):156–164

    Article  Google Scholar 

  • Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944

    Article  Google Scholar 

  • Heistad DD, Wakisaka Y, Miller J, Chu Y, Pena-Silva R (2009) Novel aspects of oxidative stress in cardiovascular diseases. Circ J 73(2):201–207

    Article  Google Scholar 

  • Herrmann J, Lerman LO, Lerman A (2010) On to the road to degradation: atherosclerosis and the proteasome. Cardiovasc Res 85(2):291–302

    Article  Google Scholar 

  • Hodjat M, Haller H, Dumler I, Kiyan Y (2013) Urokinase receptor mediates doxorubicin induced vascular smooth muscle cells senescence via proteasomal degradation of TRF2. J Vasc Res 50(2):109–123

    Article  Google Scholar 

  • Karagiannis GS, Weile J, Bader GD, Minta J (2013) Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation. BMC Cardiovasc Disord 13:4

    Article  Google Scholar 

  • Khateeb J, Kiyan Y, Aviram M, Tkachuk S, Dumler I, Fuhrman B (2012) Urokinase-type plasminogen activator downregulates paraoxonase 1 expression in hepatocytes by stimulating peroxisome proliferator-activated receptor-gamma nuclear export. Arterioscler Thromb Vasc Biol 32(2):449–458

    Article  Google Scholar 

  • Kiian I, Tkachuk N, Haller H, Dumler I (2003) Urokinase-induced migration of human vascular smooth muscle cells requires coupling of the small GTPases RhoA and Rac1 to the Tyk2/PI3-K signalling pathway. Thromb Haemost 89(5):904–914

    Google Scholar 

  • Kiyan Y, Kiyan R, Haller H, Dumler I (2005) Urokinase-induced signaling in human vascular smooth muscle cells are mediated by PDGFR-ß. EMBO J 24(10):1787–1797

    Article  Google Scholar 

  • Kiyan J, Smith G, Haller H, Dumler I (2009) Urokinase receptor-mediated phenotypic changes of vascular smooth muscle cells require involvement of membrane rafts. Biochem J 423(3): 343–351

    Article  Google Scholar 

  • Kiyan Y, Limbourg A, Kiyan R, Tkachuk S, Limbourg F, Ovsianikov A, Chichkov B, Haller H, Dumler I (2012) Urokinase receptor associates with myocardin to control vascular smooth muscle cells phenotype in vascular disease. Arterioscler Thromb Vasc Biol 32(1):110–122

    Article  Google Scholar 

  • Krug AW, Allenhofer L, Monticone R, Spinetti G, Gekle M, Wang M, Lakatta EG (2010) Elevated mineralocorticoid receptor activity in aged rat vascular smooth muscle cells promotes a proinflammatory phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and epidermal growth factor receptor-dependent pathways. Hypertension 55(6): 1476–1483

    Article  Google Scholar 

  • Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 95(2):194–204

    Article  Google Scholar 

  • Lyngbaek S, Marott JL, Sehestedt T, Hansen TW, Olsen MH, Andersen O, Linneberg A, Haugaard SB, Eugen-Olsen J, Hansen PR, Jeppesen J (2012) Cardiovascular risk prediction in the general population with use of suPAR, CRP, and Framingham Risk Score. Int J Cardiol 167(6): 2904–2911

    Article  Google Scholar 

  • Maejima Y, Adachi S, Ito H, Hirao K, Isobe M (2008) Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 7(2):125–136

    Article  Google Scholar 

  • Mahmoudi M, Gorenne I, Mercer J, Figg N, Littlewood T, Bennett M (2008) Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res 103(7):717–725

    Article  Google Scholar 

  • Mazar AP, Ahn RW, O’Halloran TV (2011) Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr Pharm Des 17(19):1970–1978

    Article  Google Scholar 

  • North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108

    Article  Google Scholar 

  • O’Halloran TV, Ahn R, Hankins P, Swindell E, Mazar AP (2013) The many spaces of uPAR: delivery of theranostic agents and nanobins to multiple tumor compartments through a single target. Theranostics 3(7):496–506

    Article  Google Scholar 

  • Orr AW, Hastings NE, Blackman BR, Wamhoff BR (2010) Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 47(2):168–180

    Article  Google Scholar 

  • Padro T, Pena E, Garcia-Arguinzonis M, Llorente-Cortes V, Badimon L (2008) Low-density lipoproteins impair migration of human coronary vascular smooth muscle cells and induce changes in the proteomic profile of myosin light chain. Cardiovasc Res 77(1):211–220

    Article  Google Scholar 

  • Pidkovka N, Cherepanova O, Yoshida T, Alexander M, Deaton R, Thomas J, Leitinger N, Owens G (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res 101(8):792–801

    Article  Google Scholar 

  • Pillay V, Dass C, Choong F (2006) The urokinase plasminogen activator receptor as a gene therapy target for cancer. Trends Biotechnol 25(1):33–39

    Article  Google Scholar 

  • Rabbani SA, Gladu J (2002) Urokinase receptor antibody can reduce tumor volume and detect the presence of occult tumor metastases in vivo. Cancer Res 62(8):2390–2397

    Google Scholar 

  • Rong JX, Shapiro M, Trogan E, Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 100(23):13531–13536

    Article  Google Scholar 

  • Smith H, Marshall C (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36

    Article  Google Scholar 

  • Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111(2):245–259

    Article  Google Scholar 

  • Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105(7):851–862

    Article  Google Scholar 

  • Wu X, Zhou Q, Huang L, Sun A, Wang K, Zou Y, Ge J (2008) Ageing-exaggerated proliferation of vascular smooth muscle cells is related to attenuation of Jagged1 expression in endothelial cells. Cardiovasc Res 77(4):800–808

    Article  Google Scholar 

  • Xie P, Fan Y, Zhang H, Zhang Y, Mingpeng S, Gu D, Patterson C, Li H (2009) CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation. Mol Cell Biol 29(9):2398–2408

    Article  Google Scholar 

  • Yoshida T, Gan Q, Owens GK (2008) Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol 295(5):C1175–C1182

    Article  Google Scholar 

  • Zheng B, Han M, Wen JK (2010) Role of Kruppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 62(2):132–139

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. K. Grote for his comments on an earlier draft of the manuscript. This work was supported by an ERA-AGE FLARE grant, financed by Bundesministerium für Bildung und Forschung [01 ET 0802]; grant P59/10//A101/10 from Else Kroener-Fresenius-Stiftung; grants from the Deutsche Forschungsgemeinschaft [KI 1376/2-1 and KI 1367/2-2; DU 344/7-1] and from the Deutscher Akademischer Austausch Dienst [A/08/98019]; and Israel Science Foundation Grant 669/09, funded by the Israel Academy of Sciences and Humanities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Kiyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiyan, Y., Fuhrman, B., Haller, H., Dumler, I. (2014). Vascular Aging: Revealing the Role and Clinical Perspectives of the Urokinase System. In: Leist, A., Kulmala, J., Nyqvist, F. (eds) Health and Cognition in Old Age. International Perspectives on Aging, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-06650-9_2

Download citation

Publish with us

Policies and ethics